
Conway et al. 
Journal of NeuroEngineering and Rehabilitation           (2023) 20:48  
https://doi.org/10.1186/s12984-023-01173-0

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of NeuroEngineering
and Rehabilitation

Quantitative assessments of finger 
individuation with an instrumented glove
Brian J. Conway1*  , Léon Taquet1,2, Timothy F. Boerger1,2  , Sarah C. Young1,2, Kate B. Krucoff1,3, 
Brian D. Schmit4 and Max O. Krucoff1,2,4 

Abstract 

Background In clinical and research settings, hand dexterity is often assessed as finger individuation, or the ability to 
move one finger at a time. Despite its clinical importance, there is currently no standardized, sufficiently sensitive, or 
fully objective platform for these evaluations.

Methods Here we developed two novel individuation scores and tested them against a previously developed score 
using a commercially available instrumented glove and data collected from 20 healthy adults. Participants performed 
individuation for each finger of each hand as well as whole hand open-close at two study visits separated by several 
weeks. Using the three individuation scores, intra-class correlation coefficients (ICC) and minimal detectable changes 
(MDC) were calculated. Individuation scores were further correlated with subjective assessments to assess validity.

Results We found that each score emphasized different aspects of individuation performance while generating 
scores on the same scale (0 [poor] to 1 [ideal]). These scores were repeatable, but the quality of the metrics varied 
by both equation and finger of interest. For example, index finger intra-class correlation coefficients (ICC’s) were 0.90 
(< 0.0001), 0.77 (< 0.001), and 0.83 (p < 0.0001), while pinky finger ICC’s were 0.96 (p < 0.0001), 0.88 (p < 0.0001), and 
0.81 (p < 0.001) for each score. Similarly, MDCs also varied by both finger and equation. In particular, thumb MDCs 
were 0.068, 0.14, and 0.045, while index MDCs were 0.041, 0.066, and 0.078. Furthermore, objective measurements 
correlated with subjective assessments of finger individuation quality for all three equations (ρ = − 0.45, p < 0.0001; 
ρ = − 0.53, p < 0.0001; ρ = − 0.40, p < 0.0001).

Conclusions Here we provide a set of normative values for three separate finger individuation scores in healthy 
adults with a commercially available instrumented glove. Each score emphasizes a different aspect of finger individu-
ation performance and may be more uniquely applicable to certain clinical scenarios. We hope for this platform to 
be used within and across centers wishing to share objective data in the physiological study of hand dexterity. In 
sum, this work represents the first healthy participant data set for this platform and may inform future translational 
applications into motor physiology and rehabilitation labs, orthopedic hand and neurosurgery clinics, and even oper-
ating rooms.
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Introduction
Hands are complex components of the human motor sys-
tem essential for a range of tasks, from simple grasping 
of objects to immensely intricate performances like art, 
music, and surgery. The ability to execute these move-
ments hinges on hand dexterity [1–4], or the ability to 
use complex motor functions to manipulate objects on 
a small scale. Because numerous neurological resources 
are required, the process is quite susceptible to damage 
and dysfunction [5, 6]. Coordinated motor planning is 
thought to begin across a network of distributed cortical 
brain areas, eventually coalescing into activation of neu-
rons in layer 5 of the hand and finger area of the primary 
motor cortex (M1). Action potentials from these neurons 
propagate down corticospinal tracts onto anterior horn 
and interneuronal cells of the spinal cord [7]. Anterior 
horn cells in turn become peripheral nerves traveling 
through the brachial plexus and down the arm, eventu-
ally innervating muscles of the hand and forearm to move 
a finger [7, 8]. This motor pathway is integrated with mul-
timodal afferent sensory pathways in an even more com-
plex, non-linear, hierarchical fashion [9, 10].

Injuries impacting hand function can entail complex 
processes occurring anywhere from the brain to spinal 
cord to peripheral nerves or intrinsic muscles. While 
clinicians are generally able to identify gross changes in 
motor function, injury, intervention, and recovery are 
physiologically multifaceted processes necessitating met-
rics sensitive enough to detect fine changes in dexterity 
which can impact quality of life [3, 4, 6, 11–18]. There-
fore, there is a need for an objective, quantitative hand 
function assessment platform to better guide its study 
and intricate neurological interventions, such as brain 
and peripheral nerve surgery [7, 13, 14, 19–24].

Currently, hand dexterity is often assessed in clinical 
and research settings as kinematic finger individuation 
[25, 26], as these abilities have been shown to concomi-
tantly diminish in patients with brain injury [2]. Unfor-
tunately, such assessments are often subjective and not 
sufficiently sensitive to detect subtle problems. While 
other groups have provided foundational work devel-
oping objective kinematic individuation scores as a 
technique of quantifying hand dexterity in non-human 
primates [26] and individuals with stroke [1, 25, 27, 28], 
there is an opportunity to explore more nuanced aspects 
of movement relevant to different clinical circumstances 
required for more broad translational research appli-
cations. Additionally, there is limited published data 
on kinematic individuation in healthy adults [1, 25, 
26]. Such data is essential for a complete understand-
ing of the assessment method and future comparisons 
to patients with hand motor deficits. Therefore, here we 
present two novel individuation scores that emphasize 

different aspects of finger individuation by weighting 
various aspects of movement, like extreme ranges of 
motion versus midrange co-movement. We used these 
equations along with a previously published Eq.  (1) to 
calculate individuation scores in 20 healthy volunteers 
with a commercially available data glove across repeated 
sessions. We include assessments of repeatability, mini-
mal detectable change (MDC), and subjective score-per-
formance evaluations using this platform. We hope that 
these results set the stage for the informed translational 
application of this objective data glove platform and scor-
ing system into motor physiology and rehabilitations 
labs, orthopedic hand and neurosurgery clinics, and even 
intraoperative arenas during peripheral nerve and awake 
brain operations.

Methods
Ethical approval and participants
20 adult participants were recruited (16 female, 4 male, 
all right hand dominant) (Table 1) who met the following 
inclusion criteria: (1) age 18 + , (2) ability to understand 
a written informed consent document and the willing-
ness to sign it, (3) normal or near normal hand motor 
strength (i.e., 5/5 on the manual motor scale), (4) normal 
or near normal speech, (5) free of other illness that in the 
judgement of the investigators may shorten life expec-
tancy, (6) willing and able to participate in all aspects of 
the study. Participants were ineligible if they met any of 
the following exclusion criteria: (1) history or presence 
of malignancy within the last 3 years, except participants 
who have been successfully treated with no recurrence 
for > 1  year of basal cell or squamous cell carcinoma of 
the skin or in-situ cervical cancer, (2) decreased hand 
motor strength (i.e. 4/5), (3) atypical form of the hand 
interfering with their ability to perform the different hand 
movements, (4) any other significant pre-existing medi-
cal conditions that in the judgement of the investigators 
may increase the risks associated with study participation 
or would preclude successful participation in the study. 

Table 1 Healthy Adult Participant Characteristics

Participant Characteristics

Sex Female 16 (80%)

Male 4 (20%)

Handedness Right 20 (100%)

Left 0 (0%)

Age Mean ± SD 28.8 ± 7.5

Median 27.5

Minimum 23

Maximum 55



Page 3 of 16Conway et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:48  

Written informed consent was obtained from all par-
ticipants. This study was conducted with approval from 
the Medical College of Wisconsin (MCW) Institutional 
Review Board (IRB) (PRO00040521) and the Froedtert 
Health Office of Clinical Research and Innovative Care 
Compliance (OCRICC).

Kinematic individuation tasks
Data were collected on each hand individually at two vis-
its separated by at least three weeks. Participants wore 
the Cyberglove III (CyberGlove Systems, San Jose, CA) 
while sitting in an office chair (Fig. 1A). The Cyberglove 
III has 22 strain gauge resistors capable of translating a 
voltage to the joint angles of the hand at a sampling rate 
of 90  Hz. It has been used in many other neuroscience 
studies investigating hand movements [25, 29, 30]. All 
data analysis and calculation of individuation scores was 
performed in MATLAB (2021).

The forearm was immobilized by attaching it to the 
arm of the chair with self-adherent elastic wrap (Fig. 1A, 
B). Additionally, participants wore a simple wrist brace 
(in either the small/medium or medium/large size as 

applicable) during testing to maintain their hand in a 
resting neutral position and to control for involvement 
of forearm muscles as much as possible (Fig.  1A, B). 
To standardize participants’ resting position between 
movement trials, a backboard of heat-moldable plas-
tic (11″ × 7″) shaped into a curved position to represent 
a generally neutral position was attached to the back 
of participants’ hands with self-adherent elastic wrap 
(Fig. 1A, B). The same backboard was used for all visits 
and participants.

At the two data collection visits, participants per-
formed kinematic individuation where they were 
instructed to maximally flex an indicated finger without 
moving the other fingers. Participants performed 10 tri-
als with each finger on each hand, and the order in which 
hands and fingers were tested was randomized prior to 
enrolling the participant. Additionally, participants per-
formed 10 trials of closing their hand into a fist with their 
thumb on the outside and opening it again, and these 
data were also used to calculate individuation scores to 
further validate the equations. Participants viewed a 
screen with example pictures of the hand at rest and fully 

Fig. 1 Experimental Protocol. A, B Participants were positioned as shown while recording data from each hand. C Photos of a participants with 
their hand at rest and while performing kinematic individuation and a timeline of events
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individuated positions. To indicate the start of a trial, 
participants heard a go-tone and a light changed from red 
to green. Participants performed the movement within a 
three second time frame paced by a visual cue. When the 
trial ended, the light changed back to red (Fig. 1C).

Finger individuation scores
To assess participants’ individuation abilities, we used 
one previously developed and two original kinematic 
individuation equations. All equations were designed to 
generate a score between 0 and 1 with 1 representing the 
theoretically “ideal” individuation (i.e., maximally moving 
only the joints of the indicated finger and none of oth-
ers) and 0 representing the theoretically “poorest” indi-
viduation (i.e., moving all fingers together). Trials where 
participants incorrectly performed movements and/or 
misunderstood directions were excluded from analysis, 
which was approximately one to three trials per study 
visit per participant. Scores calculated with the previ-
ously developed, or “Thielbar”, equation (Eq.  2) and the 
two original normalized (Eq. 3) and threshold equations 
(Eq. 4), which place an emphasis on end- and mid-range 
of motion, respectively, were investigated.

In all three equations, individual finger displacement 
was calculated as the Euclidean norm of its metacar-
pophalangeal (MCP) and proximal interphalangeal (PIP) 
joint angles (Fig.  2, Eq.  1) [25]. Distal interphalangeal 
joint (DIP) movement was not incorporated into this 
calculation as its measurement was inconsistent and 
not as clinically important [25]. Utilization of Euclidean 
norms rather than MCP or PIP joint angle alone offers 
the advantage of accounting for different strategies of 
individuation as some participants may engage one joint 
more than the other in executing this movement to the 
best of their ability [25].

Euclidean norm of finger movement

En Euclidean norm, MCP metacarpophalangeal joint 
angle, PIP proximal interphalangeal joint angle.

To assess repeatability, intra-class correlation coeffi-
cients (ICC) were calculated by correlating participants’ 
mean individuation scores across visits for each fin-
ger [31]. Bland–Altman plots were then constructed to 
visualize this relationship [32]. The minimal detectable 
change (MDC) was also calculated.

Thielbar Individuation Score (1)

Eni Euclidean norm of the indicated finger, Eno Euclidean 
norm of a non-indicated finger.

(1)En =

√

MCP
2 + PIP

2

(2)
Score = 1−

Eni
Max(Eni)

+
Eno

Max(Eno)
− 1

4

The “Thielbar” individuation equation (Eq.  2) was 
developed by Thielbar and colleagues in their study 
on hand dexterity in stroke patients, (1) which built 
upon foundational work by Schieber and colleagues 
[1, 26, 27]. Utilizing this equation requires identifica-
tion of the greatest Euclidean norm achieved by the 
indicated digit  (Eni) as well as identification of the 
Euclidean norms of the four other non-indicated dig-
its when the indicated digit is maximally flexed  (Eno) 
(Fig.  3B). The identified Euclidean norms of the indi-
cated digit are then normalized to the overall maxi-
mum Euclidean norm achieved by each digit across 
all 10 trials (Max(Eni), and those of the non-indicated 
digit are normalized to the maximum Euclidean norms 
achieved when they were each the indicated digit 
Max(Eno). This equation follows a template established 
by Schieber (1991) where he indicated that 1 must be 
subtracted from the numerator of the second term in 
Eq.  1 “to eliminate the contribution of the [displace-
ment] of the instructed digit against itself.” [25, 26]. 
The numerator of the second term is then divided by 
4 to account for the average contribution of the 4 non-
indicated digits. The entire second term is then sub-
tracted from 1, since 1 is the theoretically “perfect” 
individuation score [26].

Fig. 2 Euclidean Norm of Finger Movement. The 
metacarpophalangeal (MCP) (blue) and proximal interphalangeal 
(PIP) (red) joint angles were combined to calculate Euclidean norms 
(green) for each finger



Page 5 of 16Conway et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:48  

Normalized individuation score

Enib Euclidean norm of the indicated finger’s baseline 
position prior to initiation of movement, Enob Euclidean 
norm of a non-indicated finger’s baseline position.

We developed the “normalized” individuation equation 
to account for variations in achievable ranges of motion 
across digits and individuals, thereby normalizing the 
achieved range of motion in each trial to the individual’s 
own maximum achievable range. This is important as 
end-of-range movements is often when non-indicated 
digits begin to move, so we therefore reward partici-
pants for a fuller-range attempt without moving other 
fingers. In other words, this equation translates a higher 
percent maximum range of motion per trial to a higher 
individuation score. This is especially relevant to patho-
logical conditions, such as osteoarthtitis, where someone 
might have a baseline offset and limited range of motion. 
The normalized individuation equation will likely limit 
the impact of conditions such as these on individuation 
scores, since they are not related to the ability to execute 
the movement itself.

Similar to the Thielbar individuation equation, the nor-
malized individuation equation requires identification of 
the maximum Euclidean norm of the indicated digit in 
a given trial  (Eni) (Fig. 3B). However, a difference in this 
equation is that the baseline position of the indicated 
digit  (Enib) (Fig. 3A) is subtracted from  Eni and then nor-
malized to the overall maximum Euclidean norm digit 

(3)Score =
|Eni − Enib|

Max(|Eni − Enib|)
−

∑ |Eno−Enob|

Max(|Eno−Enob|)

4

displacement achieved across all 10 trials at a given visit 
(Max|Eni –  Enib|) for an indicated finger (i.e., maximum 
achievable range for that digit). This first term in the nor-
malized individuation equation is typically nearly equal 
to 1, as healthy participants can easily approach their 
maximum range of motion. The second term is calcu-
lated as the sum of the Euclidean norm displacement of 
the 4 other non-indicated fingers (|Eno-Enob|) normalized 
to the maximum Euclidean norm displacement achieved 
by each finger when it was the indicated digit (Max(|Eno 
–  Enob|). The numerator of the second term is divided by 
4, thus representing the average displacement of the non-
indicated digits during a trial. The entire second term is 
subtracted from the first term. Therefore, if the non-indi-
cated digits are moved extraneously, the second term will 
be greater, and the overall individuation score from the 
normalized individuation equation will be lower. Con-
versely, if the non-indicated digits are minimally moved, 
the score will remain close to 1. Moreover, achieving 
greater range of motion in a given trial that is close to a 
participants’ maximum ability results in an overall higher 
score – thus, the score from this equation will improve 
with increased range of motion.

Threshold individuation score

Enit = Euclidean norm threshold of the indicated finger: 
50% of the sample’s mean maximum Euclidean norm 
achieved by the indicated finger, Enot = Euclidean norm 
threshold of a non-indicated finger: position of the non-
indicated digit when the indicated digit reaches  Enit, 
Ethresh = Euclidean norm threshold for each of the non-
indicated fingers.

Although accounting for maximal range of motion in 
calculating individuation scores offers unique insight into 
an individual’s dexterity, some may be severely impaired 
or have low baseline dexterity resulting in only having 
the capacity to perform basic components of the move-
ment. Therefore, the “threshold” individuation equation 
(Eq. 4) was developed to capture an individual’s ability to 
reach 50% of the group’s mean range of motion with the 
indicated digit  (Enit) (Fig. 3C). The  Enit of each digit was 
determined by identifying the mean of the study sam-
ple’s maximum Euclidean norm and calculating 50% of 
that value. We then verified that all participants’ mean 
maximum Euclidean norm exceeded these thresholds. 
In a given trial, the  Enit was determined by identifying 
the Euclidean norm closest to the pre-determined 50% 
threshold. The baseline Euclidean norm  (Enib) (Fig.  3A) 
was subtracted from the indicated digit and then nor-
malized to itself making the first term always equal to 

(4)Score =
|Enit − Enib|

|Enit − Enib|
−

∑ |Enot−Enob|

Max(|Ethresh−Enob|)

4

Fig. 3 Relevant Hand Positions. Key Euclidean norms needed for 
the three individuation scores include the hand at rest (A), with 
the indicated finger fully flexed (B), and with the indicated finger 
reaching the 50% threshold (C)
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one across all trials. The second term of the threshold 
individuation equation resembles that of the normalized 
individuation equation, but it includes the Euclidean dis-
placement achieved by the non-indicated digits when the 
indicated digit reaches the pre-specified threshold (|Enot 
–  Enob|). This displacement of the non-indicated fingers 
is then normalized to their respective Euclidean norm 
thresholds  (Ethresh) minus the baseline position  (Enob). 
Similar to the normalized individuation equation, the 
numerator of the second term is divided by 4 to quantify 
average displacement of the non-indicated fingers. Thus, 
the threshold individuation equation offers a quantified 
assessment of how well a participant can perform 50% of 
the kinematic individuation task.

Subjective assessment and individuation score validation
To validate the individuation scores developed here, and 
because kinematic individuation has traditionally been 
subjectively assessed [33–35], a subset of individuation 
trials was also subjectively scored by two independent 
reviewers, the lead author (BC) and middle author (TB), 
a licensed athletic trainer with a PhD in Exercise and 
Rehabilitative Sciences. These individuals watched videos 
of the participants performing 10 trials of individuation 
of the right index and pinky fingers at participants’ first 
study visit. The scoring method used was developed by 
our multidisciplinary author group to stratify individua-
tion performance using objective criteria that correlated 
with subjective assessments of what constitutes “good” 
individuation. To this end, each trial was given a rating 
of 1, 2, or 3 using the following scale: 1-excellent, less 
than 45 degrees of movement of any of the non-indi-
cated fingers; 2-moderate, greater than 45 degrees of one 
non-indicated finger; 3-poor, greater than 45 degrees of 
more than one non-indicated finger. Movements of the 
index and pinky fingers were chosen to be reviewed as 
these were generally associated with participants’ best 
and worst individuation scores, respectively. Once both 
reviewers viewed videos from all participants, any con-
flicts in subjective rating were resolved. Both index and 
pinky finger trials from six participants and the index fin-
ger trials from two participants were excluded from the 
subjective ratings validation due to compromised video 
recordings. The subjective ratings on a scale from 1 to 3 
were correlated to the corresponding individuation score 
calculated from each of the three individuation equa-
tions, and Spearman’s rho was calculated to assess the 
relationship between a subjective perception of the qual-
ity of movement and a quantified evaluation via individu-
ation score.

Additionally, individuation scores were calculated from 
the data collected while participants performed the 10 
trials of closing their hand into a fist and opening again. 

Since the aim of this movement is to move all fingers, 
whichever finger had the greatest range of motion was 
selected as the ‘indicated’ finger and the others were the 
non-indicated fingers for the Thielbar and normalized 
individuation scores (Eqs. 2, 3). For the threshold scores 
(Eq. 3), whichever finger reached the 50% threshold first 
was selected as the indicated finger with the others as the 
non-indicated fingers. In theory, this should represent 
the worst possible individuation performance.

Results
Task visualization
Three-dimensional reconstructions were developed 
from the Cyberglove III joint angle data to visualize indi-
vidual trials and confirm the data accurately depicted 
the assigned kinematic task (Fig.  4A, B). Additionally, 
plots showed the joint angle traces of kinematic tasks for 
both individuation (Fig. 4C) and closing the hand into a 
fist (Fig.  4D) to observe the relationship between finger 
movements and corresponding individuation scores. Fig-
ure 4C shows an example trial of index finger individu-
ation with clear movement of the index MCP and PIP 
joints and minimal movements of others with Thielbar, 
normalized, and threshold individuation scores of 0.91, 
0.92, and 0.92, respectively. A similar graphical repre-
sentation of closing the hand into a fist is presented in 
Fig. 4D with all joint angles increasing as the hand closes 
and returning to baseline as the hand opens. The Thiel-
bar, normalized, and threshold individuation equations 
scored these movements as 0.13, 0.071, and 0.35, respec-
tively (Fig. 4D).

Distribution of individuation scores
For all three individuation equations, participants’ mean 
scores fell into partially overlapping ranges and followed 
non-normal distributions for both study visits. Partici-
pants’ mean Thielbar individuation scores across all fin-
gers and both visits ranged from 0.60 to 0.92 (Fig.  5A). 
Mean normalized individuation scores across all fingers 
and both visits ranged from 0.40 to 0.95 (Fig. 5B). Mean 
threshold individuation scores across all fingers and visits 
ranged from 0.68 to 0.99 (Fig. 5C). Overlapping 95% con-
fidence intervals between the two visits for all fingers and 
equations are noted (Fig. 5).

Repeatability of individuation scores
Across the two study visits, individuation scores calcu-
lated with the Thielbar, normalized, and threshold equa-
tions were repeatable, but the strength of repeatability 
varied by both equation and finger (Figs. 6, 7). Minimal 
change in individuation scores was observed within par-
ticipants for all three equations (Fig. 6).
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For Thielbar individuation scores, intra-class cor-
relation coefficients (ICC’s) were 0.68 (p < 0.01), 0.90 
(p < 0.001), 0.82 (p < 0.001), 0.85 (p < 0.0001), and 0.96 
(p < 0.0001) for the thumb, index, middle, ring, and pinky 
fingers, respectively (Fig. 7A–C). Aside from one outlier, 

the difference in participants’ Thielbar individuation 
scores fell within 1.96 standard deviations of the sample’s 
mean difference. The difference in participants’ Thielbar 
individuation scores were randomly distributed around 
the sample’s mean difference for the index (p = 0.78), 

Fig. 4 Example data collected with the Cyberglove III in a single participant. Three-dimensional reconstructions of the Cyberglove data while 
performing index individuation (A) and closing the hand into a fist (B). Joint angle traces while performing index individuation (C) and closing the 
hand into a fist (D) and the corresponding individuation scores

(See figure on next page.)
Fig. 5 Distribution of individuation scores. Thielbar (A), normalized (B), and threshold (C) individuation scores of the thumb, index, middle, ring, and 
pinky fingers fall into unique ranges and have non-normal distributions. Overlapping 95% confidence intervals (shown as error bars) demonstrate 
the repeatability of kinematic individuation. Points represent participants’ mean individuation scores. Sample means are shown as a black dashed 
line. Sample medians are represented as red lines. Data from first visits are shown on the left in the graphs for each finger in the colors maroon, blue, 
and orange. Data from second visits are on the right in the colors cyan, green, and yellow
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Fig. 5 (See legend on previous page.)
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middle (p = 0.74), ring (p = 0.58), and pinky (p = 1.0) 
fingers (Fig.  7A–C). However, for the thumb Thielbar 
individuation scores, a positive shift can be observed 
(p = 0.01) (Fig. 7A). The MDC for Thielbar individuation 
scores were 0.068, 0.041, 0.057, 0.073, and 0.062 for the 
thumb, index, middle, ring, and pinky fingers respec-
tively (Fig. 7A–C). Figures 6 and 7 present data from par-
ticipants’ thumb and index fingers as these were typically 
their highest scores as well as their pinky fingers as these 
were their lowest.

For normalized individuation scores, ICC’s were 
0.87 (p < 0.0001), 0.77 (p < 0.001), 0.72 p < 0.005), 0.60 
(p < 0.05), and 0.88 (p < 0.0001) for the thumb, index, 

middle, ring, and pinky fingers, respectively (Fig.  7D–
F). Similar to the Thielbar individuation scores, the dif-
ference in participants’ normalized individuation scores 
fell within 1.96 standard deviations of the sample’s 
mean difference except for one outlier for each finger 
(Fig. 7D–F). The differences in participants’ normalized 
individuation scores were randomly distributed around 
the samples’ mean difference for the thumb (p = 0.93), 
index (p = 0.78), middle (p = 0.10), ring (p = 0.07), and 
pinky (p = 0.09) fingers (Fig.  7D–F). MDC’s were cal-
culated as 0.14, 0.066, 0.085, 0.12, 0.13 for the thumb, 
index, middle, ring, and pinky fingers respectively 
(Fig. 7D–F).

Fig. 6 Participants’ Individuation scores between two visits. There was minimal change in participants’ mean Thielbar (A–C), Normalized (D–F), and 
Threshold (G–I) individuation scores (IS) between the two visits for all fingers. The thumb, index, and pinky fingers are shown here as the thumb and 
index were typically participants’ highest scores while the pinky was the lowest
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For threshold individuation scores, ICC’s were 0.63 
(p < 0.05), 0.83 (p < 0.001), 0.63 (p < 0.05), 0.76 (p < 0.01), 
and 0.81 (p < 0.001) for the thumb, index, middle, ring, 
and pinky fingers, respectively (Fig.  7G–I). The differ-
ence in participants’ mean threshold individuation 
scores were randomly distributed around the group’s 
mean difference for thumb (p = 0.93), index (p = 0.78), 
middle (p = 0.10), ring (p = 0.07), and pinky (p = 0.09) 
fingers and fell within 1.96 standard deviations of the 
sample’s mean difference in individuation score except 
for one outlier for each finger (Fig. 7G–I). MDC’s were 
0.15, 0.066, 0.085, 0.12, and 0.13 (Fig. 7G–I).

Validating individuation scores
Although the ranges of scores within each subjective rat-
ing overlapped, it was possible to identify notable statis-
tical relationships. For example, for index finger trials, 
ρ was equal to − 0.45 (p < 0.0001), − 0.53 (p < 0.0001), 
and − 0.40 (p < 0.0001) for the Thielbar, normalized, 
and threshold individuation equations, respectively 
(Fig. 8). For the pinky finger trials ρ was equal to − 0.66 
(p < 0.0001), − 0.31 (p < 0.0001), and − 0.23 (p < 0.05) for 
the Thielbar, normalized, and threshold individuation 
equations, respectively (Fig. 8).

Fig. 7 Bland Altman plots of individuation scores. The repeatability of Thielbar (A–C), Normalized (D–F), and Threshold (G–I) individuation scores 
can be visualized as the black line represents the mean difference of individuation scores across the two visits, and the majority of participants 
fall within the two blue lines representing ± 1.96 standard deviations of the mean difference. Participant-level data is represented as blue squares. 
Intra-class correlation coefficients (ICC), corresponding p-values, and minimal detectable changes (MDC) are shown. The thumb, index, and pinky 
fingers are shown here as the thumb and index were typically participants’ highest scores while the pinky was the lowest
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For trials of participants closing their hand into a fist 
and opening it again, scores fell into ranges of 0.0027 to 
0.080, 0.027 to 0.18, and 0.24 to 0.68 for the Thielbar, nor-
malized, and threshold equations, respectively (Fig.  9). 
Overlapping 95% confidence intervals for sample’s mean 
individuation score between study visits for hand close/
open trials is noted. Scores near zero were expected as 
all fingers were moving resulting in a complete lack of 
individuation. The threshold scores are notably higher 
for these trials relative to the Thielbar and normalized 
scores, likely because this equation calculates the dis-
placement of the other fingers when the indicated finger 
reaches its 50% threshold instead of maximal displace-
ment. Therefore, while scores of less than 0.25 are pos-
sible, they are rarely achieved with this equation (Fig. 9).

Discussion
The purpose of this study is to establish an objective, 
repeatable, and quantitative platform to evaluate finger 
individuation that may be translatable across multiple 
clinical and research settings. To this end, here we pro-
vide a set of normative values for three separate finger 
individuation scores in healthy adults using the Cyber-
glove III, each of which emphasizes a different aspect of 
performance and, therefore, might better fit certain clini-
cal applications.

While the data glove used here has been and contin-
ues to be used in many research settings [1, 8, 25, 27–30, 
36, 37], our work enables more informed translational 
applications when objective measurements of finger 
individuation are needed. Finger individuation is a core 

Thielbar

ρ = -0.45
p <0.0001

ρ = -0.53
p <0.0001

ρ = -0.40
p <0.0001

A B C

Fig. 8 Validating individuation scores through subjective review. Index Thielbar (maroon) (A), normalized (blue) (B), and threshold (orange) (C) 
individuation scores plotted against subjective ratings of 1 (‘excellent’), 2 (‘moderate’), or 3 (‘poor’). Points represent participants’ individual trials of 
right-hand index individuation trials at their first study visit. Spearman’s Rho (ρ) and corresponding p-values are shown for each relationship
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component of basic hand dexterity that allows for the 
completion of other complex and dexterous tasks in eve-
ryday life. Rather than measuring the ability complete 
individual dexterous tasks, it can be useful to directly 
measure finger individuation, as it is inherent to nearly all 
abilities of the hand and can thus more broadly inform 
the extent of motor deficit.

Because each individuation score emphasizes different 
aspects of individuation, each is likely more applicable to 
certain clinical and research scenarios, as explored in the 
subsections below. While there is no ‘best’ individuation 
score, there are inherent advantages and drawbacks to 
each based on the equations used to calculate them.

Thielbar individuation score
The cohort of healthy volunteers enrolled in our study 
predictably scored slightly higher than the cohort of 
patients with irreversible brain injury due to stroke in 
Theilbar and colleagues’ study [25] as shown in Fig.  4 
of their results. While the Thielbar scores calculated 
in our study demonstrated overall repeatability, it var-
ied by finger. For example, while the pinky scores were 
rather widely distributed, excellent repeatability was 
observed as the ICC was greater than 0.9 [38, 39]. There 
was ‘good’ repeatability of Thielbar individuation scores 
of the index, middle, and ring fingers as these ICC’s fit 
into the range of 0.75–0.9. There was ‘moderate’ repeat-
ability of Thielbar individuation scores of the thumb 
as the ICC fell into the range of 0.5–0.75 [38]. There 

was a non-random distribution of score differences for 
Thielbar Thumb scores, but this was the only instance 
where such a finding was observed. A possible explana-
tion is greater familiarity with the task resulting in bet-
ter performance at the second visit. The MDC was low, 
indicating a relatively high sensitivity to change. Future 
studies will aim to determine the minimal clinically 
important difference (MCID) in patients with hand 
motor dysfunction, which will be critical to adapt-
ing these techniques to rehabilitative settings aimed at 
determining patients’ recovery trajectory.

The statistically significant relationship between Thiel-
bar individuation scores and subjective ratings indicate 
that trials subjectively assessed as ‘good’ (1), ‘moderate’ 
(2), or ‘poor’ (3) followed a trend in Thielbar individua-
tion score. Moreover, when the Thielbar individuation 
equation was used to calculate individuation scores with 
trials of participants closing their hand into a fist, scores 
were expectedly close to zero as all fingers were engaged 
in these trials. Ultimately, the Thielbar individuation 
score has been shown to be sensitive enough to detect 
change in patients with stroke [25], and here we show 
that healthy adults predictably achieve higher scores 
than those with pathology. However, the score does not 
emphasize range of motion, likely resulting in a dimin-
ished sensitivity to changes in individuals with minor 
dysfunction more exaggerated at end-range positions.

Normalized individuation score
The normalized individuation equation was designed to 
promote full range of motion, as individuation is most 
difficult at the end-range [40, 41]. These scores demon-
strated good repeatability of the thumb, index, and pinky 
fingers and moderate repeatability of the middle and ring 
fingers. As healthy participants were more able to reach 
their maximum range of motion across all trials, they 
achieved higher mean individuation scores. The rather 
low MDC’s indicate a high sensitivity to change.

Notably, there was a negative relationship between 
normalized individuation scores and subjective ratings 
as higher individuation scores were associated with the 
superior subjective ranking of ‘one’ while lower scores 
were associated with an inferior ranking of ‘two’ or ‘three’. 
The ranges of individuation scores within each subjec-
tive rating category clearly overlapped. Appropriately, 
the normalized individuation equation resulted in uni-
formly low scores for trials of participants closing their 
hand into a fist. Additionally, normalized scores spanned 
a wider distribution than Thielbar scores, further reflect-
ing the effect of including range of motion in the calcu-
lation. Ultimately, the normalized score appears to be 
more affected by smaller performance deviations than 

Fig. 9 Individuation scores for hand open/close data. Thielbar 
(A), normalized (B), and threshold (C) individuation scores were 
calculated for trials of closing the hand into a fist and opening again 
at both study visits. First visits are shown on the left side of each 
graph in maroon, blue, and orange with second visits on the right 
in cyan, green, and yellow. Black circles represent participants’ mean 
individuation scores. Dashed horizontal black lines represent sample 
means, and red horizontal lines represent sample medians
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the Thielbar equation, meaning it is likely more sensitive 
to detect mild dysfunction at end-ranges but less suitable 
for grosser motor pathology that requires a tighter set of 
healthy normative values for comparison.

Threshold individuation score
For the threshold individuation equation, participants’ 
mean scores were the highest as this equation assesses 
whether participants can perform the basic components 
of the instructed movement. As these participants were 
all healthy, typical movements easily surpassed the 50% 
threshold. There was good repeatability of the index, 
ring, and pinky individuation scores, as well as moderate 
repeatability of thumb and middle fingers. The threshold 
score MDC’s were also low, similar to the Thielbar and 
Normalized equations. Given these results, we hypoth-
esize that the threshold equation will prove most useful 
in assessing patients with severe deficits.

Similar to the Thielbar and normalized scores, a weak 
negative relationship was identified between individua-
tion score and subjective rating. Additionally, the ranges 
of scores within each subjective rating clearly overlapped. 
Relationships between subjective ratings and individu-
ation scores from all equations indicate the objective 
quantitative methods of assessing hand dexterity appro-
priately correspond to a subjective perception of per-
formance quality. This is an important consideration as 
subjective methods have traditionally been used to assess 
dexterity in the clinical setting for many disturbances in 
the hand motor system [2, 9, 14].

Threshold individuation scores from hand open/close 
trials were higher and more widespread than the Thiel-
bar and normalized scores for the same trials. The ina-
bility to reach a score of 0 may be an artifact of how the 
scores were calculated rather than a true limitation, as 
the order in which the fingers were closed when forming 
a fist was most critical in this calculation. During these 
trials, the first finger to reach its threshold was arbitrar-
ily selected as the “indicated finger” so an individuation 
score could be calculated. Thus, if one finger reached its 
threshold while others remained close to their neutral 
position, a slightly higher threshold individuation score 
would result. Overall, results from the threshold equa-
tion suggest it would likely be most appropriate in assess-
ing severe impairments, and that it would be unlikely 
to sensitively detect the most subtle perturbations in 
performance.

Applications to clinical and research settings
As explored in the introduction, fine motor control 
of the hands is incredibly physiologically complex. As 
such, clinically, the hands are shared by multiple medical 

subspecialties, including neuro-, plastic, and orthopedic 
surgery. Authors on this manuscript represent a diverse 
group interested in how brain lesions and surgeries affect 
fine motor control [42, 43], developing neuro rehabilita-
tion techniques to improve outcomes in patients with 
CNS injury [7, 44], better understanding of fine motor 
dysfunction from cervical myelopathy [45], and pre-
dicting and tracking outcomes of nerve transfers and 
extremity injuries [46]. With these applications in mind, 
the need to develop better techniques for quantifying 
hand function, especially in patients with central nerv-
ous system injury, becomes clear [47–52]. The platform 
tested here begins to address this gap, as results from this 
cohort of healthy volunteers provides a range of norma-
tive values that appear sufficiently repeatable over time 
for most clinical applications. Next steps will be applying 
this platform in pre-, intra-, and post-operative settings 
[53] to assess its performance in these settings with vary-
ing pathology, as well as developing related but different 
tests of other hand dexterity modalities (i.e., isometric 
finger force generation).

Limitations
The major limitation of this work is our limited sample 
size and narrow demographics, as our cohort of partici-
pants consisted of20 right-handed mostly young adults, 
most of whom were female. Fortunately, it has been pre-
viously demonstrated that hand strength and function 
typically remain consistent until approximately 60  years 
of age [54], so future renditions of this study with mid-
dle-aged adults would likely produce similar results. 
Notably, extrapolations to the pediatric, elderly, and left-
handed population should be made with caution or not 
at all. Additionally, we did not study patients with known 
pathology such as osteoarthritis of the hand, peripheral 
nerve injuries, or nerve compressions, which can con-
found performance [55, 56]. Therefore, extrapolation of 
these results to participants with musculoskeletal impair-
ments should not be made. Although the techniques 
presented here were developed with the intention of 
assessing motor system dysfunction, the translation into 
assessing patients with dysfunction of any sort remains to 
be seen in future studies.

Second, although the results presented here depict sta-
tistical evidence for the repeatability of these methods, 
visual representations of scores show clear within-partic-
ipant changes in individuation scores for the normalized 
and threshold individuation equations. It is important 
to note, however, that participants with large changes 
in individuation scores for a given finger often had simi-
lar changes for other fingers. This suggests the changes 
across the two visits for a participant have multiple 
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contributory factors, such as changes in effort, famili-
arity with the task, and slight changes in positioning 
both between participants and visits. These points often 
appeared as outliers in the Bland–Altman plots, but all 
outliers were included in the analyses. This variability 
should be noted in case of the need for repeat testing. 

Third, while range of motion is an important compo-
nent of kinematic individuation, other important com-
ponents include muscle strength, speed, accuracy, and 
smoothness, to name a few. While these components of 
individuation were not directly assessed here, we plan 
to investigate these equally important aspects of finger 
movement in future studies. Additionally, some hand 
motor tasks do not require full range of motion, such 
as typing, further emphasizing the unique utility of our 
three individuation equations which place different 
weigh on range of motion as a factor in calculating and 
individuation score.

Conclusions
In sum, here we provide a set of normative values for 
three separate finger individuation scores in healthy 
adults using the Cyberglove III. Each individuation score 
emphasizes a different aspect of finger individuation per-
formance that may be more uniquely applicable to certain 
clinical scenarios. It is our hope that this platform can be 
used within and across centers wishing to share objective 
data in the physiological study of hand dexterity.
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