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Abstract 

Background  Presentation of visual stimuli can induce changes in EEG signals that are typically detectable by averag-
ing together data from multiple trials for individual participant analysis as well as for groups or conditions analysis 
of multiple participants. This study proposes a new method based on the discrete wavelet transform with Huffman 
coding and machine learning for single-trial analysis of evenal (ERPs) and classification of different visual events in the 
visual object detection task.

Methods  EEG single trials are decomposed with discrete wavelet transform (DWT) up to the 4th level of decomposi-
tion using a biorthogonal B-spline wavelet. The coefficients of DWT in each trial are thresholded to discard sparse 
wavelet coefficients, while the quality of the signal is well maintained. The remaining optimum coefficients in each 
trial are encoded into bitstreams using Huffman coding, and the codewords are represented as a feature of the ERP 
signal. The performance of this method is tested with real visual ERPs of sixty-eight subjects.

Results  The proposed method significantly discards the spontaneous EEG activity, extracts the single-trial visual 
ERPs, represents the ERP waveform into a compact bitstream as a feature, and achieves promising results in classifying 
the visual objects with classification performance metrics: accuracies 93.60±6.5 , sensitivities 93.55±4.5 , specificities 
94.85±4.2 , precisions 92.50±5.5 , and area under the curve (AUC) 0.93±0.3 using SVM and k-NN machine learning 
classifiers.

Conclusion  The proposed method suggests that the joint use of discrete wavelet transform (DWT) with Huffman 
coding has the potential to efficiently extract ERPs from background EEG for studying evoked responses in single-
trial ERPs and classifying visual stimuli. The proposed approach has O(N) time complexity and could be implemented 
in real-time systems, such as the brain-computer interface (BCI), where fast detection of mental events is desired to 
smoothly operate a machine with minds.
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Introduction
Investigation of the neural mechanism of the human brain 
through non-invasive imaging modalities is the primary 
goal of neuroscientists. Electroencephalography (EEG) is 
a neuroimaging technique that is most commonly used 
as a non-invasive and cost-effective imaging modality in 
the research community. The utmost prominent field of 
study in which the use of the EEG technique is applied 
and reported its usefulness is event-related potentials 
(ERPs). In an ERP study, the stimuli (events) presentation 
is synchronized with brain responses through an EEG 
acquisition device. When an event occurs, or a stimulus 
presents to the participant, it triggers responses to spe-
cific cognitive, sensory, or motor regions that can be col-
lected through the EEG technique over the scalp. ERPs 
are useful in studying cognitive processes, clinical appli-
cations, and developing brain-computer interface (BCI) 
systems [1]. A standard method to extract an ERP signal 
is to take an average on the entire set of EEG segments, 
which have recorded the evoked potentials against the 
visual or auditory events (also known as trials). The trials 
are time-locked EEG recordings that are made synchro-
nized with the neural activity occurring inside the brain 
during an experimental setup. In addition, averaging 
cancels out the noise as well as other ongoing neural pro-
cesses [2]. The common assumption for this approach is 
that the human brain continuously behaves exactly in the 
same manner to specific stimulation. However, this may 
not be true as habituation and attention can influence 
brain responses [3]. The analysis of brain dynamics with 
the average ERPs method is well-known to researchers. 
Presently, the single trials of ERPs analysis have become 
a new interest with additional challenges [4]. The trial-to-
trial variability is the limiting factor to getting high classi-
fication results between different types of events. Besides, 
single-trial responses are a mixture of task-related 
responses with tasks unrelated responses, which lowers 
the signal-to-noise ratio of the observed ERPs. The trial-
to-trial variability within the subject or inter subjects var-
iability is present in amplitudes and latencies of the ERP 
signals [5]. Thus, it is recommendable to enhance the fea-
ture extraction process of the ERP signals before applying 
any type of classification algorithm [6]. Different feature 
extraction methods have been developed to discriminate 
the ERP signals from noise, including spatial and tempo-
ral filters, e.g., bandpass filter, notch filter, principal com-
ponent analysis (PCA), and more advanced de-noising 
techniques, such as wavelet de-noising and blind source 
separation techniques [7].

Previous studies on ERP extraction reported the use 
of features extracted from the temporal, frequency, and 
spatial domain to separate trials belonging to certain cat-
egories based on a single trial basis. The steps in signal 

processing include pre-processing, spatial filtering, fea-
ture extraction, and modeling with machine-learning 
classifiers [6]. The pre-processing of EEG for time-locked 
signals employs a band-pass filter with a lower cut-off 
frequency from 0.1 to 0.5Hz and an upper cut-off fre-
quency of   30Hz [8]. The band-pass filtering removes 
unwanted signals, such as high-frequency artifacts and 
DC components, and retains the desired range of fre-
quencies where the event-related potential signal can be 
extracted. The EEG signal can then be segmented using 
the time-stamped information of stimuli onset and offset. 
The segments include a portion of the signal before the 
stimulus onset, such as 100ms pre-stimulus, as a baseline 
line and the whole duration of the stimulus presenta-
tion until offset. Some individual segments may be con-
taminated by eye blinks and eye movements, i.e., if the 
amplitude exceeded ±90µV[9], which would either be 
discarded from further analysis or can be corrected by 
employing methods, such as ICA [10]. The segments (tri-
als) can be visualized to detect those electrodes that may 
have lost contact in the event of widespread drift, as well 
as bad channels in the segments, spherical spline method 
is a good choice to correct bad channels [11]. Finally, the 
pre-processing step includes a data-independent spatial 
filtering technique called an averaged reference, which 
re-reference the data from the original single electrode 
used during data recording [12]. After the preprocessing, 
the next step in signal processing is feature extraction, 
which mines stimulus-related information from the pre-
processed signals. The well-known methods of feature 
extraction include time, frequency, and time-frequency 
features.

In the literature on visual object classification based on 
single-trial ERP, many studies have focused on extract-
ing specific ERP components, combining the use of ERP 
components, and extracting features from the whole ERP 
signals, such as using the component of P2, P3, and N1/
N170. For instance, Zhang, et  al. [13] have proposed a 
temporal principal component analysis-based method for 
N2 and P2 components extraction in single-trial for indi-
vidual subjects. It also explored the influence of the num-
ber of trials (from 10 to 42 trials), on PCA decomposition 
by comparing temporal correlation, and spatial correla-
tion with conventional time-domain analysis. A stable 
ERP N2 component with 20 trials and a P2 component 
with approximately 30 trials were obtained. Wang, et al. 
[14] reported ERP findings for visual stimulus classifica-
tion, where the stimuli include four categories: building, 
car, cat, and face, and 64-channel EEG equipment was 
used to acquire the EEG signals which were extracted 
for the corresponding ERP components after preproc-
essing the signals. The classification results for two class 
problems using individual ERP components with Fisher 
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LDA (Fisher Linear Discriminant Analysis) classifier were 
above 50% detection accuracy, while the combined ERP 
components slightly enhanced the overall classification 
performance by 5%. The dataset of Wang et al. [14] was 
re-analyzed by Qin, et  al. [15] and focused on EEG sig-
nals captured from the occipital lobe. Each visual stimu-
lus data is considered independently as a subspace, and 
features extracted in each subspace were then fused using 
principal component analysis (PCA). The reported clas-
sification results based on kernel SVM was 72.57% accu-
racy, which is 6% higher than the results reported by 
Wang et al. [14]. Zhang, et al. [16] proposed a data aug-
mentation approach for single trial detection based on a 
generative adversarial network to enhance the classifica-
tion performance. The results proposed a 73% reduction 
of real subject data and acquisition cost and enhances 
the general classifier performance. Parashiva and Vinod 
[17] proposed a single-trial detection method based on 
temporal domain features, i.e., the standard deviation 
between the two categories of trials, for discriminating 
the correct and error trials employing a modified power-
law based transformation. The reported results were 
presented from a sample of 10 subjects, and the average 
sensitivity and specificity were 86% and 92% respectively, 
for discriminating correct vs error trials. Similarly, Wirth, 
et al. [1] reported a single-trial classification method for 
discriminating between different error trials. The authors 
used two datasets were used with 25 and 14 participants 
to discriminate between error trials. The classification 
results show mean overall accuracy of 65.2% and 65.6% 
for two experimental tasks.

Previously we have developed feature extraction meth-
ods for spontaneous EEG recordings [18, 19], such as 
eyes open and eyes closed recordings, and clinical EEG 
recordings for detecting epileptic seizure activities, 
where the authors have used discrete wavelet transform 
(DWT) with db4 mother wavelet as the db4 wavelet is 
most appropriate for detecting seizure spikes. Further, in 
our previous work [18, 19], the arithmetic coding tech-
nique was used to convert the wavelet coefficients into 
bitstreams because the spontaneous EEG recordings have 
a relatively long duration, and the signals have the poten-
tial of high redundant information. Also, the arithmetic 
coding technique provides superior results in reducing 
the redundant information in long signals relative to 
short-length signals like ERPs. However, for ERPs signals, 
the db4 wavelet does not provide a good resemblance 
with the ERP waveforms. Thus, the previously developed 
features extraction method for spontaneous EEG analy-
sis was not promising enough to detect visual events in 
ERPs signals. However, it has been reported from pre-
vious single-trial analysis studies that the biorthogonal 
B-spline wavelet is the most suitable mother wavelet for 

ERPs signals [20]. Moreover, the ERPs signals are time-
locked short EEG segments, usually from 500ms to 
2000ms long. Thus, the discrete wavelet transform with 
a biorthogonal B-spline wavelet could be a suitable com-
bination to extract the ERPs from the background EEG 
signals more efficiently, and the Huffman coding could be 
a choice to use for reducing the redundancy and comput-
ing the features for ERPs.

Machine learning techniques proved helpful in brain-
computer interface (BCI) applications e.g., to control 
motor prostheses. This kind of application requires 
accurate and fast detections of physical motor events 
corresponding with neuronal activity, which could be 
achievable with the use of machine learning. Many analy-
sis methods and machine learning tools are reported to 
be used to achieve such accuracy in ERPs [21–23]. How-
ever, the ERP responses achieved through visual stimuli 
are less regular and also have a low signal-to-noise ratio 
as compared to the motor control task signals. Therefore, 
the classification of such ERPs is a challenging task and 
requires a robust feature extraction method that could 
give the best classification results by using machine 
learning classifiers. Machine learning classifiers such as 
k-NN and SVM have been used for the classification of 
mental states, diagnosis of mental disorders, and/or sepa-
ration of different categories of stimuli based on EEG 
and ERP signals [24]. It is also reported that k-NN and 
SVM are also valuable for the detection of other health 
abnormalities, such as Purwar, et  al. [25] reported the 
detection of mesangial hypercellularity MEST-C score 
in immunoglobulin using deep CNN. Similarly, in other 
studies, Purwar, et al. [26] and Purwar, et al. [27] reported 
the detection of microcytic hypochromic using cbc and 
blood film features extracted from convolution neural 
networks by different machine learning classifiers and 
using a fusion of deep image and clinical features for clas-
sification of Thalassemia patients.

The study aims to develop a feature extraction method 
that could efficiently extract a compact set of useful 
information from background EEG segments for event-
related potentials (ERPs) to detect visual events from 
evoked potentials accurately. The proposed method for 
ERPs would be a cost-effective feature extraction tech-
nique that could be used in the classification of visual 
events. The present work chooses the DWT with the 
biorthogonal B-spline wavelet to decompose the EEG 
segments up to several levels and get the DWT coeffi-
cients. Then a thresholding technique is applied to dis-
card unnecessary coefficients and retain only significant 
coefficients that hold the relevant information of the ERP 
signal. The retained coefficients are encoded into bit-
streams with Huffman coding to extract features. Moreo-
ver, the proposed feature extraction method can assist in 
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the real-time detection of visual event-related potentials, 
particularly desirable in applications of brain-machine 
interfaces or brain-computer interfaces.

The organization of subsequent sections of the paper 
follows: the section Materials and Methods provides 
details of the experimental task, participants’ informa-
tion, experimental procedure, EEG recording & preproc-
essing, details steps of the proposed feature extraction 
method, and analysis; the section’ Experimental Results 
and Discussion’ presents the findings of the study, com-
parison results, and provides discussion on the study 
findings and relevant to previous studies, and reporting 
the limitations of the study for future research; finally the 
paper is concluded.

Materials and methods
This section provides the detail of data collection (includ-
ing participants’ information, visual object detection 
task, experiment procedure, and preprocessing steps) 
wavelet transform, an explanation of the proposed 
method, and an overview of machine learning classifiers 
used in this work.

Participants
The sample size in this experiment was sixty-eight osten-
sibly healthy participants recruited for participation. 
Their age range was between 18-to-30 years and the 
mean (M) and standard deviation (SD) were 23.66, and 
±3.63 , respectively. All of them had normal or ‘corrected 
to normal’ vision and were free from neurological disor-
ders, medication, and hearing impairments. They signed 
a written informed consent document before starting the 
experiment as per the defined study protocol. This analy-
sis is part of a research study that was approved by the 
Human Research Ethics Committee of the collaborating 
institution [28].

Visual object detection task and stimulus
The visual object detection task is used for studying vis-
ual evoked potentials in ERP studies. The presentation 
of visual stimuli allows us to examine the neural activ-
ity elicited during attention-demanding cognitive events 
[29]. In the experimentation, the visual object detection 
task was performed by all the participants, where two 
shapes: a box and a sphere, were used to represent the 
target and standard stimuli. The duration of every trial 
was 1000ms in which the visual stimuli, either stand-
ard or target, were presented for 500ms time and 500ms 
time was used between two consecutive events as an 
inter-trial-interval (ITI), see Fig. 1. The task demands the 
participants to use the button ‘0’ from the numeric key-
board to record responses against a target stimulus, and 
not to respond when a standard stimulus appears. All the 

participants were instructed to avoid errors and respond 
quickly as possible. Thus, the presentation software cap-
tured the reaction time and correct responses for target 
stimulus detection synchronized with the neural activi-
ties. In the task, a total of one hundred and thirty-five tri-
als were used, in which thirty percent of trials possessed 
target stimulus trials and seventy percent possessed 
standard stimulus trials. Accordingly, forty trials belong 
to target stimulus events and ninety-five trials belong to 
standard stimulus events. The task was approximately 
four minutes long, which was adopted with modification 
from a previous ERP [30].

Experiment procedure
The schedule of the data collection was communicated 
to all the participants, and according to their availability, 
experiments were conducted individually at the specified 
time. When a participant arrived, he/she was informed 
about the experimental procedure and instructed accord-
ing to the defined study protocol. Then the participant 
was seated in a partially sound-attenuated EEG room for 
preparation. Head measurement was taken and accord-
ingly an EEG electrodes cap of appropriate size was set 
up as per the device manual, and thus the participants 
completed the experiment, including the visual object 
detection task, which was completed in around four min-
utes. The experiment was run on a screen attached to a 
laptop to synchronize the stimuli presentation with the 
EEG recording using E-Prime Software [31].

EEG recording
The EEG signals were captured during the experimen-
tal task from all the participants over the whole scalp of 
128 locations by using the EEG device HydroCel Geo-
desic Sensor NetAmps 300 from Electrical Geodesic Inc., 
Eugene, OR, USA. In the EEG data acquisition, the EEG 
sensors were referenced to the Cz location, and raw EEG 
signals were amplified with the NetApms300 amplifier 
of EGI in net-station software. The filtering setting was 
kept as bandpass 0.1 to 100 Hz and a notch filter of 50 
Hz; while the impedance was set below 50 K � ensuring 
a good signal-to-noise ratio as per the manufacturer’s 
guidelines [11]. The continuous EEG signals were digi-
tized with a sampling rate of 250 Hz.

EEG pre‑processing
EEG is a non-stationary and highly time-varying sen-
sitive signal. During acquisition, EEGs are highly vul-
nerable to the external environment. The vulnerability 
to the external environment allows different unwanted 
interferences to the EEG, known as artifacts. The 
causes of artifacts could be due to physical activities, 
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such as cardiac activity (electrocardiogram, ECG), mus-
cle contraction (electromyogram, EMG), ocular activity 
caused by eye movement and/or blinking (electromyo-
gram, EOG), and interference from the EEG device 
(DC drift) itself and the line (line noise at 50Hz). These 
artifacts mixed with the EEG activity can greatly mis-
lead the analysis results, especially in time-locked EEG 
such as ERPs, where EEG is synchronized with the vis-
ual or audio stimuli. Therefore, the EEG signals need 
proper pre-processing before considering the signals 
for extracting events relevant information, i.e., feature 
extraction, for further analysis. In general, the artifacts 
due to the EEG device itself and the line noise can be 
removed from the recordings by using band-pass filter-
ing and notch filter. The artifacts due to physical activi-
ties can be handled with Blind Source Separation [32], 
spatial filtering, and adaptive filtering. In this study, the 
data pre-processing of raw EEG recordings was car-
ried out with the following steps. The pre-processing 
included the EEG segmentation, as shown in Fig. 2. 

1	 a bandpass filter 0.3–30 Hz, roll-off 12 dB octave was 
applied and discarded high-frequency artifacts and 
DC components.

2	 the EEG signals were segmented with 600ms length 
including 100ms pre-stimulus time as a baseline and 

Fig. 1  An illustration of the visual object detection task

Fig. 2  EEG preprocessing for ERPs analysis
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500ms post-stimulus time for obtaining the individ-
ual EEG trials.

3	 individual EEG segments (trials) if contaminated 
with eye blinks and eye movements, i.e., if the ampli-
tude exceeded ±90µ V, were corrected with the inde-
pendent component analysis (ICA) method [32].

4	 The EEG segments (trials) were visualized to detect 
the electrodes that had lost contact in the event of 
widespread drift, as well as bad channels in the seg-
ments, which were corrected with the spherical 
spline method [11].

5	 Finally, the data were re-referenced to the averaged 
reference from a single vertex Cz electrode and sub-
sequently exported into *.mat format for further 
analysis as pre-processed EEG signals. The times-
tamps of stimulus onset, response, and offset were 
extracted from the stimuli presentation software.

Wavelet transform
The wavelet transform is the inner product of a given sig-
nal x(t) with dilated and translated versions of the wave-
let function �a,b(t) is defined as:

The parameters a, b ∈ ℜ represent the scale and trans-
lation, respectively. The scaling parameter dilates or 
compresses the wavelet function and the translation 
parameter changes its location [33]. The correlation of 
the signal x(t) with the dilated/contracted versions of 
the wavelet function �(a,b)(t) provides the low/high fre-
quency components. Practically, the wavelet transform 
is defined at discrete scales aj = 2j and times b(j,k) = 2jk , 
called discrete wavelet transform (DWT). The DWT suc-
cessfully divides the given signal into approximations and 
details coefficients at different scales. The lower scales 
give information about high-frequency components and 
the high scales give information about low-frequency 
components. The DWT decomposition in the present 
study is given in the description of the proposed method 
section.

Huffman coding
Huffman coding is a widely used technique for elimi-
nating data redundancy and generating optimal code-
words for data compression. For a given set of alphabets 
or data symbols with their probabilities of occurrences, 
it produces a set of variable-length codewords, having 
the shortest average length, and allocates the codewords 

(1)W�X(a, b) = �x,�a,b �

(2)�a,b =| a |
−1/2 �(

t − b

a
)

to the given data symbols. First, it creates a sequence of 
source reductions by looking at the frequencies of occur-
rence (the probabilities) of the source symbols and tak-
ing the bottommost probabilities symbols into a single 
symbol that substitutes the source reduction. Repeating 
this process till reducing the source to two symbols. Sec-
ond, to encode each reduced source, starting smallest 
source and going back to the original source. The mini-
mal length binary code (0 and 1) is assigned to two sym-
bols in an arbitrary style. Repeating this process for each 
reduced source symbol till it reached the original source. 
The average length of the final code can be obtained as:

Where P(ai) represents the probability, and l(ai) denotes 
the code length of the ith symbol. Huffman coding is use-
ful in many applications, such as data compression. In the 
present study, the Huffman coding method is used as one 
step after discarding wavelet coefficients with a thresh-
old in the EEG feature extraction for single-trial analy-
sis. Thus, the Huffman coding can transform the wavelet 
coefficients into bitstream which would be a compact 
representation of the ERPs.

Proposed Feature Extraction Method for ERPs Analysis
The proposed method as illustrated in Fig. 3 consists of 
three main steps, including (i) DWT decomposition, (ii) 
Features Computation, and (iii) Features Classification, 
besides the pre-processing steps which are described in 
the previous section ‘EEG Pre-processing’.

The pre-processed EEG signal, represented as x[n] is 
decomposed by applying the DWT up to the fourth level 
with a biorthogonal B-spline wavelet with three vanish-
ing moments in the reconstruction (synthesis) wave-
let and five vanishing moments in the decomposition 
(analysis) wavelet, produces approximation and detailed 
coefficients, see Fig.  4. The bi-orthogonal B-Spline was 
selected as the basic wavelet function due to its reported 
suitability for the analysis of ERPs data [20, 34, 35]. 
B-splines have compact support and possess a shape 
(see Fig. 5) that resembles the ERP waveform [20], pro-
viding an optimal resolution in time-frequency for the 
input signal, which implies that the evoked responses are 
localized in a few coefficients. The localization of evoked 
responses in a compact number of wavelet coefficients 
allows the representation of the ERP signal within a few 
optimal coefficients and discards non-significant coef-
ficients while fulfilling certain signal quality criteria, i.e., 
99% energy in a reconstructed signal. The procedure of 
DWT in the decomposition applies consecutive lowpass 
h(n) and high pass g(n) filters, where the high pass filter 
g(n) represents the discrete mother wavelet and the low 

(3)Lavg = �
(J n)
(i=1)P(ai)l(ai)
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pass filter h(n) represents its mirror version [36]. The 
h(n) and g(n) filters have a cutoff frequency that is one-
fourth of the input EEG signal’s sampling frequency. At 
the start of decomposition in the first level, the lowpass 
h(n) and high pass g(n) filters are concurrently applied to 
the input EEG signal and produce the corresponding out-
puts, which are referred to as approximation coefficients 
or (A1) and detailed coefficients or (D1) , respectively. 
The approximation and detailed coefficients are the dot 
product of the EEG signal and the specified basis func-
tion. Mathematically, in the ith level of decomposition 
the approximation coefficients Ai and the detailed coef-
ficients Di can be expressed as below:

where, ϕj,k(n) = 2−j/2h(2−jn− k) is the scaling function.

where, φj,k(n) = 2−j/2h(2−jn− k) is the wavelet function.
Here the parameters used in the above two equations 

represent the DWT decomposition which is used up to 
level 4, so J = 4 ; while the length of the discrete EEG 

(4)Ai =
1

√
M

�nX(n).ϕj,k(n)

(5)Di =
1

√
M

�nX(n).φj,k(n)

signal x[n] is denoted with M. Likewise, the value of 
n = 0, 1, 2, ...,M − 1 ; and the value of j = 0, 1, 2, ..., J − 1 ; 
and value of k = 0, 1, 2, ..., 2j − 1.

The outputs of DWT decomposition including the last 
approximation (Ai = 4) and all the detailed coefficients 
(Di=1,2,3,and4) are denoted with Djk and diminished after 
using a certain threshold value α which discarded the 
non-significant coefficients.

The reconstructed signal is ensured to have more than 
99% energy after using the threshold value α.

Here the variables Xr represents the restored EEG signal 
and X refers to the original EEG signal.

The criteria reported for computation of threshold 
parameter (α) by Donoho and Johnstone [37] is used, 
where the standard deviation of the noise (unwanted 
signal) is estimated by considering the last level of the 
detailed coefficients vector. Moreover, hard thresholding 
is used and the threshold value (α) is expressed as follows:

(6)Djk =
Djk , if | Djk |≥ α,

0, if | Djk |< α,

(7)Energy(E) =
(100× � Xr �

2
2)

� X �
2
2

> 99%

Classifiers SVM with RBF, and kNN 
provides Classification of visual events 
(target and standard) from ERPs

DWT is applied up-to 4th level with Bi-
orthogonal B-Spline mother wavelet, to 
decompose the signals into coefficients

The wavelet coefficients are reduced by 
threshold, such that the reconstructed 
signal retained more than 99% energy   
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Classifiers’ Performance 
Evaluation (AUC, accuracy 
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(LOO) cross validation
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Fig. 3  Illustration of the proposed method for single-trial analysis and classification of visual events
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Here, the number of wavelet coefficients that exist in the 
last level of detailed (D4) is indicated with N. The value 
of σ̂ is computed which is based on the median absolute 
deviation and expressed here as,

Here, in the above equation, the term in the denomina-
tor reflects the scale factor, depending on the distribution 
of D̂jk , for normally distributed data the value is equal to 
0.6745; while D̂jk represents the wavelet coefficients in 
the last level of the detailed coefficients.

Accordingly, the use of a threshold parameter ensured 
the quality of the reconstructed EEG signal, which is 
obtained after discarding the non-significant coefficients. 
The thresholded DWT coefficients, denoted with D̂jk , are 
rounded off to the nearest integer, represented as Djk . 

(8)α = σ̂
√

2logN

(9)σ̂ =
median|D̂jk |

0.6745

The rounded-off DWT coefficients Djk are converted into 
bitstreams by using the Huffman coding technique.

In Huffman coding, the whole sequence of DWT 
coefficients Djk is assigned a codeword. The Huffman 
codewords represent the single-trial waveform in a com-
pressed form. The size of DWT coefficients is reduced, 
resulting in a compressed single trial of the EEG signal. 
Accordingly, the DWT coefficients’ size is compacted, 
and subsequently, the signal is compressed. Finally, the 
Huffman coding output bitstreams provide the computa-
tion of features denoted with F as follows:

Where,

(10)F =
1

CR
× 100

(11)CR =
(x)

(xc)

 22

g[n] h[n]

 22

g[n] h[n]

 22

g[n] h[n]

 22

g[n] h[n]

x[n]

d1: L1
detailed Coefficients

Data: 80 points 
Freq: 62.5~125 Hz

d2: L2
detailed Coefficients

Data: 45 points 
Freq: 31.25~62.5 Hz

d3: L3
detailed Coefficients

Data: 28 points 
Freq: 15.625~31.25 Hz 

d4: L4
detailed Coefficients

Data: 19 points 
Freq: 7.812~15.625 Hz

a4: L4 Approx. 
Coefficients

Data: 19 points 
Freq: 0~7.812 Hz 

a3: L3 Approx. 
Coefficients

Data: 28 points 
Freq: 0~15.625 Hz 

a2: L2 Approx. 
Coefficients

Data: 45 points 
Freq: 0~31.25 Hz 

a1: L1 Approx. 
Coefficients

Data: 80 points 
Freq: 0~62.5 Hz 

x[n]       a0: L0
Approximation 

Coefficients

Single trial band pass EEG
Data: 150 Points
Freq: 0~125 Hz

Fig. 4  Fourth-level DWT Decomposition, where d1 refers to detailed coefficients and a1 denotes the approximation coefficients at level 1, L refers 
to level, Freq. stands for frequency in hertz
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Here, (x) represents the size of orignal ERP signal, and 
(xc) reflects the size of compressed ERP signal. This pro-
cess is iterated for each participant’s data, including all 
the channels, visual events (target and standard), and 
trials. The feature matrix F for a single subject for each 
visual event can be represented as:

where, m denotes the number of trials for the target or 
standard event and n represents the number of channels.

The literature reported the wavelet decomposition for 
various applications of EEG classification with different 
levels, for instance, level 3, level 4, or higher [19, 38]. It 
is further reported that the range of basic EEG rhythms, 
including delta, theta, alpha, beta, and gamma waves, 
correspond to DWT coefficients located in D1 to D4 and 
A4 [38]. Thus, level 4 is chosen for DWT decomposition 
because of the corresponding frequencies in the EEG sig-
nals collected in this study. Moreover, it was observed 
that the number of wavelet coefficients that can be dis-
carded without disturbing the quality of EEG signals was 

(12)F =




1 · · · n
.
.
.

. . .
.
.
.

m · · · m× n





high in decomposition level 4, which allowed only thirty 
percent of the wavelet coefficients for the reconstruc-
tion of the original signal while retaining 99% of the sig-
nal energy. However, examining higher than four levels 
of DWT decomposition did not produce a significant 
rise in the number of discarded wavelet coefficients, see, 
Fig. 6 shows an average ERP from 40 trials of one subject 
at Pz location for target trials and standard trials. Also, 
displays five trials for a single trial bandpass EEG signal 
(black), and the superimposed reconstructed ERP signal 
from optimum wavelet coefficients (red) of one subject at 
Pz both for target and standard trials.

Machine learning classifiers and cross‑validation
Machine learning classifiers are functions taking input 
data as independent variables and making predictions 
about the input data corresponding to the relevant 
class, the data points belong to [39]. To determine the 
efficiency of the proposed method in ERP single tri-
als classification, we have used two machine learning 
classifiers: k-nearest neighbors (k-NN) with k = 5 ; and 
Support Vector Machine (SVM) with radial basis func-
tion (RBF). Both classifiers are supervised learning 
techniques. The k-NN works to find a testing sample’s 

Fig. 5  Bi-orthogonal B-Spline mother wavelet (bior3.5) analysis and synthesis
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class by the majority class of the k nearest training sam-
ples, that is, a class label is allocated to the new instance 
that is the most common class amongst the k nearest 
neighbors in the feature space, see [39] for details of k-
NN and machine learning classifier. The SVM is based 
on large margin theory and uses the decision function 
with maximum margin. The kernel trick of SVM allows 

the successful handling of non-linear separable data. 
The RBF provides a good classification performance in 
many applications including EEG data, and it is a well-
known SVM kernel function. There are two parameters 
for SVM classifier with RBF kernel, the first one is the 
soft margin parameter C and second one is the RBF 
kernel parameter ( γ ), both were tuned with utilizing a 
k-fold cross-validation strategy.

Fig. 6  Average ERP from 40 trials of one subject at Pz a target trials and b standard trials. Single trials bandpass EEG signal (black), reconstructed 
ERP signal from optimum wavelet coefficients (red) of one subject (five out of 40 trials) at Pz c target trials, and d standard trials
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A standard procedure for assessing the performance 
of a classifier on a given dataset is the k-fold cross-val-
idation (CV) method [40]. This method randomly splits 
the dataset into k disjoint folds with identical sizes, 
where k − 1 folds are used as training data, and one-fold 
is retained as validation for testing the machine learning 
model. The CV process is then iterated k times with each 
of the k-folds used exactly once as the validation data. 
Thus, the model produces k times the performance met-
rics. Accordingly, the performance of the classifiers can 
be evaluated by taking an average over k values of the 
metrics, such as accuracy, resulting from the k-fold cross-
validation. The CV approach has the advantage of using 
all the data points (observations or instances) in the given 
dataset for training and testing and each observation is 
utilized exactly once for validation. Further, as the value 
of k is increased, the variance of the resulting estimate 
could be reduced. The computation cost for running the 
training algorithm for k times might be high if the data-
set is significantly large; in that case, it can be handled by 
selecting a reasonable k value, for instance, 10-fold. In the 
present study, leave-one-out (LOO) cross-validation is 
adopted as the dataset is relatively small. A more descrip-
tion of the LOO is provided in the experimental setup 
and results section.

Experimental setup, classification findings, 
and discussion
The experimental setup employed for extracting ERP 
features and classification of visual stimuli to assess the 
proposed approach for ERPs analysis is explained in 
this section. We start with feature extraction and then 
train/test the machine learning classifiers and cross-val-
idation, reported the classification results, compared the 
results of the proposed approach for ERP extraction with 
state-of-the-art methods, and finally, the findings are 
discussed.

Experimental setup
For each subject, 40 sets of ERPs have been extracted, i.e., 
responses to target and standard stimuli recorded over 
the scalp. Usually, ERPs are analyzed on the midline elec-
trodes, such as Fz, Cz, and Pz. However, in this study, a 
dense array EEG of 128 electrodes data was used to study 
the brain responses all over the scalp during the given vis-
ual events. Each single-trial ERP was decomposed into four 
levels of DWT detail and approximation coefficients using 
a bi-orthogonal B-Spline wavelet. The wavelet coefficients 
correspond to different frequency bands, see Fig.  4. All 
the detailed and last approximation coefficients were con-
sidered for analysis because the input EEG signal to DWT 
decomposition was band passed 0.3 ∼ 30Hz . The number 
of coefficients extracted at each level depends on the input 

signal length and the analysis wavelet (the number of its fil-
ter tabs [34]). Each single-trial recording was selected from 
the continuous EEG 100ms before the stimulus onset and 
lasted for 500ms after the stimulus onset. The extracted 
coefficients corresponded to -100ms to 500ms, i.e., 600ms 
duration of every single trial. The optimum DWT coef-
ficients retained the relevant information of evoked 
responses for each trial. Since the amplitude of the wave-
let coefficients is correlated with the ERPs [20]. Thus, the 
variations in the standard and target trials can be detected 
by computing the ERP features from the joint use of DWT 
coefficients with Huffman coding. The Huffman coding 
further reduced the size of DWT coefficients, reducing the 
redundancy in the computation of features.

After the feature extraction, machine learning classi-
fiers are applied to detect the trials corresponding to class 
1 and class 2 or discriminate as standard and target trials. 
To improve both the strength of the classifier and its abil-
ity to generalize to new data, the implementation of the 
classifier is cross-validated with leave-one-out (LOO). The 
leave-one-out (LOO) is k-fold cross-validation in which the 
k is equal to N (where N is the number of instances or data 
points in the dataset). Thus, the number of folds is equal 
to the number of data observations. Accordingly, the clas-
sifier is trained and tested k times iteratively. Each training 
on k − 1 of k folds and the testing is done on the remain-
ing one fold (unseen data) [39]. In this process, each trial is 
used at least one time as test data. The classification results 
are then observed from the accuracy of testing the respec-
tive unseen kth fold, and the accuracy, sensitivity, specific-
ity, and precision, are averaged across the k folds [39].

The machine learning classifiers SVM and k-NN are 
assessed for the classification performance on ERPs 
visual stimuli. For this purpose, different model evalua-
tion metrics are used such as sensitivity (SEN), specific-
ity (SPC), accuracy (ACC​), precision (PRC), and ROC 
analysis. The SEN, SPC, ACC​, and PRC are described as 
follows.

The number of trials correctly identified corresponding 
to ‘class 1’ by the system is represented as ‘true positive or 

(13)SEN =
TP

TP + FN
× 100%

(14)SPC =
TN

(TN + FP)
× 100%

(15)ACC =
(TP + TN )

(TotalCases)
× 100%

(16)PRC =
(TP)

(TP + FP)
× 100%
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TP’; the number of trials correctly identified correspond-
ing to ‘class 2’ by the system is referred to as ‘true nega-
tive or TN’; the number of incorrectly identified trials as 
‘class 1’ by the system are denoted as ‘false positive or FP’ 
and the number of incorrectly identified trials by the sys-
tem is named as ‘false negative or FN’.

Classification findings
The proposed feature extraction method for the clas-
sification of visual stimuli based on single-trial ERPs 
presents promising classification results for detecting 
visual events, i.e., standard events, or target events. The 
extracted features from single trials of all the partici-
pants were checked for potential outliers in the data. A 
standard statistical procedure was followed for detect-
ing outliers in the extracted features, i.e., the three-sigma 
rule, which states that any feature would be considered 
an outlier if the feature value is greater than +3 standard 
deviations from the mean value, or less than -3 standard 
deviations from the mean value [41]. The features were 
visualized through box plots. In addition, a normality test 
was applied to the extracted features to confirm that the 
features meet the normality criteria defined by the Shap-
iro-Wilk test [42]. Overall, none of the participant’s data 
met the outlier criteria to be excluded. However, some 
features deviated from the mean value in a few partici-
pants’ data associated with the electrodes placed on the 
most external row of the EEG 128 electrodes cap, such 
as electrodes placed near the neck and/or near the face. 
Consequently, the deviated features were corrected using 
the data imputation method, which replaced the devi-
ated feature’s value by considering the mean of the fea-
tures extracted from the neighboring electrodes. Thus, 
all the sample was included in the classification results. 
Since the objective of the study is to detect the visual 
events through single-trial ERPs, therefore, individual 
participant data was used for classification, and the over-
all mean and standard deviations of the classification 
results across participants of both the classifiers, k-NN 
and SVM, are depicted in Table 1, which shows promis-
ing classification results for Standard and Target visual 
events. Both SVM and k-NN classifiers achieved prom-
ising results in detecting visual events. However, the 
results of the SVM classifier are relatively superior to the 
k-NN. The SVM classifier achieved an average accuracy 
of 93.60% compared to the 90.80% accuracy of the k-NN 
classifier across the participants.

In Fig.  7, the confusion matrix, ROC (receiver oper-
ating characteristics) curve, and Area Under the ROC 
Curve (AUC) for both SVM and k-NN classifiers are 
shown, produced from one participant’s data for illustra-
tion. The ROC curve demonstrates the true positive rate 
(TPR) on the y− axis , and the false positive rate (FPR) on 

the x − axis , reflecting the performances of the SVM and 
k-NN models. The AUC generally represents the degree 
of separability of a model, accordingly, a higher AUC 
value for SVM indicates a superior classification between 
standard events and target events relative to k-NN. The 
neural activities evoked by the target and standard stim-
uli are closely resembled except after a 300ms time win-
dow, see Fig. 8, where a strong P300 component appears 
in the target trials, and the corresponding amplitude of 
the standard trials is relatively low. For illustration, an 
averaged ERP of a single participant for the Standard and 
Target events elicited at the Pz site is visualized, and the 
whole scalp topography, covering all the electrodes at the 
peak amplitude, shown as the dotted line in Fig. 8, dem-
onstrating the differences between the standard and tar-
get evoked responses.

Comparison of proposed approach with existing methods
The proposed single-trial ERP extraction method is com-
pared with the relevant previous studies by implementing 
their reported methods on the dataset used in this study. 
Two recent relevant studies on single-trial extraction 
were implemented; the first one was reported by Zhang, 
et al. [13], which focused on factor analysis with the use 
of principal component analysis (PCA) for single-trial 
ERP extraction. The single-trial ERP features extracted 
were tested/validated with both the SVM and k-NN 
classifiers. The obtained results were quite low than the 
results of the proposed method (see, Table 2). Similarly, 
the implementation of the second previous study here 
was reported by Lee, et  al. [43], which focused on the 
use of one-unit independent component analysis (ICA) 
with reference. The single-trial ERP features extracted 
with the ICA-based method were tested/validated with 
both the SVM and k-NN classifiers and found below 
the achieved performance of the proposed method (see, 
Table  2). Thus, the proposed single-trial ERP extraction 
method outperformed the state-of-the-art methods in 
extracting single-trial ERPs and the classification of vis-
ual events. Finally, the comparison with previous relevant 
studies confirmed the robustness of the proposed single-
trial ERP extraction and classification of visual events 
with machine learning.

Table 1  Classification of target and standard events using a 
Support Vector Machine (SVM) with RBF kernel and k-nearest 
neighbor (k-NN) classifier with the k= 5

Data is arranged as mean±standard deviation, AUC stands for ‘Area Under the 
ROC Curve’. RBF stands for ‘radial basis function’

Accuracy Sensitivity Specificity Precision AUC​

SVM 93.60 ± 6.5 93.55 ± 4.5 94.85 ± 4.2 92.50 ± 5.5 0.93 ± 0.3

k-NN 90.80 ± 7.4 91.50 ± 6.2 90.20 ± 7.3 91.45 ± 6.5 0.91 ± 0.5
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Discussion
The conventional analysis of event-related potentials 
is based on the study of the average responses to differ-
entiate the categories of events, such as target and non-
target. The averaging method needs a series of repeated 
multiple trials of EEG to improve the signal-to-noise 
ratio and detect the ERPs. In addition, the ensemble 
averaging discarded critical information about processes 
developing during an experiment, such as sensitization 
and habituation [20]. On the contrary, single-trial analy-
sis can detect ERPs in a single or very few trials, rather 
than requiring an average of repeated multiple trials. 
However, the detection of ERPs in the single-trial analysis 
is a challenging task due to their low amplitude compared 
to spontaneous EEG activity. ERP components, includ-
ing P300, can be varied systematically or unsystematically 
across the trials. The decrease in amplitude of the ERPs 
due to habituation is an example of systematic changes in 
neural response [44]. Previously, it is reported that P300 
amplitude is decreased with repeated presentation of 

the target stimulus without any strong shifts in latencies 
[45]. In addition, it is also shown in an animal study that 
exponential amplitude decays of ERPs elicited with audi-
tory clicks, while in the early trials, a significant increase 
in the amplitude is observed due to sensitization [3]. The 
neural changes can be unsystematic in the single-trial 
ERPs as reflected in trial-to-trial amplitude and latency 
variabilities (known as amplitude and latency jitters). The 
trial-to-trial latency variability of ERPs causes two con-
sequences [46]: First, it blurs the average ERP waveforms 
and may induce or attenuate existing condition effects 
in amplitude and amplitude differences between condi-
tions. Second, different extents of latency jitter across 
conditions may imitate ERP amplitude effects. For exam-
ple, suppose two conditions have identical amplitudes 
but differ in variabilities of single-trial latencies. In that 
case, the average ERP will result in amplitude differences 
across conditions, which might be statistically significant. 
The amplitude jitter and latency jitter can be handled 
by using selective averages [47] and latency corrected 

Fig. 7  Illustration of a Confusion Matrix and b Area under the ROC Curve of SVM classifier, c Confusion Matrix and d Area under the ROC Curve of 
k-NN Classifier
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averages [48], respectively, but their solutions still have 
limitations, as reported by [49].

Numerous studies have been reported on single-
trial ERPs detection using the wavelet transform [20, 
35, 50–52]. However, these studies have limitations, 
such as Quian Quiroga [51]; Quian Quiroga and Gar-
cia [35] which previously proposed a useful wavelet-
based denoising method to improve the visualization of 

single-trial ERPs. However, the method required prior 
knowledge of the time and frequency ranges in which the 
single-trial ERPs are likely to reside. In addition, exten-
sive work of an expert user is also required to choose the 
wavelet coefficients manually [3]. In the present study, we 
presented a wavelet-based single-trial extraction method 
from the spontaneous EEG noisy background collected in 
a two-stimuli object detection paradigm and then utilized 
machine learning to classify the visual evoked responses 
elicited by the target and standard stimuli. We used a Bi-
orthogonal B-Spline mother wavelet because of its com-
pact support, and close resemblances with the evoked 
neural responses [20], resulting in a good localization of 
the evoked responses in the wavelet domain with a few 
wavelet coefficients. Thus, allowing to the representa-
tion of the single trial in a compact form. The target and 
standard trials elicited closely related neural responses, 
which raises concerns over the single-trials classification 
algorithms, especially at the feature extraction level. The 

Fig. 8  An illustration of averaged ERPs over multiple trials of a single subject for the Standard and Target events elicited at the Pz site with 
corresponding whole-brain topographic maps at peak amplitude, shown as a vertical black dotted line

Table 2  Comparisons of findings (extraction of ERP and 
classifiers accuracy) with previous studies for single-trial ERPs 
Extraction

Data is arranged as mean±standard deviation

PCA-based 
Method[13]

ICA-based Method[43] Proposed Method

SVM 74.30 ± 7.3 77.30 ± 6.8 93.60 ± 6.5

k-NN 71.70 ± 6.6 72.70 ± 5.9 90.80 ± 7.4
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similarity between the corresponding features of target 
and standard trials can make it hard for the classification 
algorithm to detect the given classes with high accuracy. 
The differences between target and standard trials, espe-
cially in P300 detection, occur after 300ms to the stim-
ulus onset, which possibly resides in the low-frequency 
components. The threshold criteria used in this study 
mostly eliminated the high-frequency components and 
retained the low-frequency components, resulting in a 
different number of percentage optimum wavelet coeffi-
cients selected to represent the target and standard trials, 
achieving an acceptable level of classification results.

The novelty of this study is the joint use of discrete 
wavelet transforms (DWT) with Huffman coding to 
extract robust ERP features in the proposed method. The 
discrete wavelet transform with a Bi-orthogonal B-Spline 
mother wavelet is previously reported as the most suit-
able wavelet for ERPs analysis [20, 34, 35], providing 
an optimal time-frequency resolution implies that the 
evoked responses are localized in a few wavelet coeffi-
cients. Thus, the compact number of wavelet coefficients 
allows for the representation of the ERP signal with few 
optimal coefficients, which were further compressed with 
Huffman coding to calculate the ERP features finally and 
subsequently classify them. With Huffman coding, DWT 
allows locating signal compression, the limit to which a 
signal can be compressed, which is an important prop-
erty of EEG signals that varies with the brain’s states. For 
instance, a resting-state EEG signal would have a high 
probability of compression relative to an EEG signal 
recorded during a cognitive task. Furthermore, the filter 
bank implementation of the DWT takes O(N) time. The 
encoder and decoder of the Huffman coding technique 
are also in linear time [53]. Thus, the time complexity of 
the proposed method is linear, i.e., O(N).

The single-trial ERP extraction method reported by 
Zhang, et al. [13] focused on factor analysis with the use 
of principal component analysis (PCA) for single-trial 
ERP extraction. PCA is a linear transformation method 
that aims to identify the underlying components of the 
EEG signal that capture the most variance in the signal. 
In the context of ERP analysis, PCA can identify the com-
ponents of the signals that are related to specific ERP 
component, like P300 or N100. The benefit of using PCA 
could be the speed, which makes it ideal for large EEG 
data. However, the limitation of PCA for ERP extraction 
is that the components may correspond to stimulus-
relevant information such as desired ERP components, 
and stimulus-irrelevant information such as artifacts. 
Similarly, the ERP extraction method reported by Lee, 
et al. [43] is based on one-unit independent component 
analysis (ICA) with reference. In general, the ICA is a 
powerful method of separating a mixture of signals into 

their underlying independent sources. In the context of 
ERP extraction, the ICA can identify and separate the 
independent components that are related to specific 
ERP components, such as P300 or N170. The usefulness 
of ICA for ERP extraction is that it separates the ERP 
components from the artifacts, such as eye blinks, eye 
movement, and muscle activity, which is relatively easy 
to extract ERP from background EEG signals. However, 
ICA is more computationally expensive and time-con-
suming than the PCA method, especially for large data 
or high-density multi-channel EEG. Both PCA and ICA 
methods could be used to extract ERP signals from the 
background EEG. However, compared to the proposed 
method in the current study, which jointly uses wavelet 
transformation and the Huffman coding method. The 
wavelet transform with a Bi-orthogonal B-Spline mother 
wavelet (bior3.5) can represent the whole ERP signal into 
a few wavelet coefficients, and unnecessary coefficients 
can be discarded without losing the critical stimulus-
relevant information in the signal and maintaining the 
signal quality. The robustness of the proposed method is 
confirmed by comparing it with the previous studies uti-
lizing the same dataset and classifiers used in this study.

Limitations of the study
This study aims to propose an efficient and robust feature 
extraction method for single-trial ERPs analysis and clas-
sification of visual events. The study has a few limitations 
necessary to consider for future research on the subject 
matter. The first limitation could be using a two stimuli 
visual object detection task in the experiment. Thus, 
the results in this study address a binary classification 
problem only. A standard oddball task with three visual 
stimuli, including standard, target, and distracter stimuli, 
would be suitable for a multi-class problem. Second, the 
present study considered the whole duration of the ERPs 
trials starting from the stimuli onset to the stimuli off-
set. Suppose a specific component of ERP, for instance, 
P300 detection is desirable. Then the data should be 
analyzed in specific time windows, such as after 300ms 
of stimuli onset, in which case the proposed may not 
be useful because the length of the signal would be too 
short. Finally, the study considered all the electrodes in 
the classifiers, which might be a little expensive con-
cerning computation costs. Thus, selecting specific elec-
trodes, for instance, picking electrodes based on a 10–20 
system or using only the midline electrodes (Fz, Cz, Pz, 
and Oz) where ERP peaks are more prominent in specific 
experiments would be appropriate. In addition, an auto-
matic feature selection option could also be helpful, for 
instance, adopting principal component analysis (PCA) 
or Fisher’s Discriminant Ratio to reduce the number of 
features.



Page 16 of 17Amin et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:70 

Conclusion
This paper demonstrated an efficient and automatic 
method for single-trial ERP analysis and classification of 
visual events in the object detection task. The method is 
based on the optimum coefficients of the discrete wavelet 
transform and the Huffman coding technique. The per-
formance of the proposed method is evaluated with real 
EEG experimental data for visual object detection tasks 
and showed robust feature extractions for single-trial 
ERPs from background noisy EEG and the classification 
of targets vs. standard trials with the machine learning 
classifiers. The proposed method allows studying single-
trial visual evoked responses and discrimination of visual 
events. ERPs are an established way of conducting cogni-
tive neuroscience research and related disciplines. Many 
research studies have reported using ERPs to study the 
brain’s functions, different states, and pathologies. The 
proposed method for single-trial ERPs analysis with a 
machine learning approach, such as ensemble use of dis-
crete wavelet transform with the Huffman coding, would 
allow robust feature extraction for single trials classifica-
tion and further would assist in the data analysis that may 
give new insights into studying the sensory and cognitive 
processes in the healthy and affected brain. This method 
may be implemented in the future for real-time systems, 
such as BCI applications for detecting and discriminating 
different motor and cognitive events.
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