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Abstract 

Background  Upper-limb rehabilitation robots provide repetitive reaching movement training to post-stroke patients. 
Beyond a pre-determined set of movements, a robot-aided training protocol requires optimization to account for the 
individuals’ unique motor characteristics. Therefore, an objective evaluation method should consider the pre-stroke 
motor performance of the affected arm to compare one’s performance relative to normalcy. However, no study has 
attempted to evaluate performance based on an individual’s normal performance. Herein, we present a novel method 
for evaluating upper limb motor performance after a stroke based on a normal reaching movement model.

Methods  To represent the normal reaching performance of individuals, we opted for three candidate models: (1) 
Fitts’ law for the speed-accuracy relationship, (2) the Almanji model for the mouse-pointing task of cerebral palsy, 
and (3) our proposed model. We first obtained the kinematic data of healthy (n = 12) and post-stroke (n = 7) subjects 
with a robot to validate the model and evaluation method and conducted a pilot study with a group of post-stroke 
patients (n = 12) in a clinical setting. Using the models obtained from the reaching performance of the less-affected 
arm, we predicted the patients’ normal reaching performance to set the standard for evaluating the affected arm.

Results  We verified that the proposed normal reaching model identifies the reaching of all healthy (n = 12) and 
less-affected arm (n = 19; 16 of them showed an R2 > 0.7) but did not identify erroneous reaching of the affected arm. 
Furthermore, our evaluation method intuitively and visually demonstrated the unique motor characteristics of the 
affected arms.

Conclusions  The proposed method can be used to evaluate an individual’s reaching characteristics based on an 
individuals normal reaching model. It has the potential to provide individualized training by prioritizing a set of reach-
ing movements.
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Background
Reaching movement (RM), among the most important 
recovery goals of stroke rehabilitation, represents inter-
joint coordination in activities of daily living [1]. Rehabil-
itation robots can provide repetitive reaching training to 
post-stroke patients, whereas conventional rehabilitation 
modalities are labor intensive [2–4]. Beyond a predeter-
mined and fixed set of movements, the training protocol 
will be more effective when optimized based on patient-
specific needs for motor recovery [5–7]. Hence, the indi-
vidualization of robotic therapy is required to account for 
an individual’s unique motor characteristics, resulting in 
varying motor performance and learning capacities [8, 
9]. Therefore, an evaluation method that can objectively 
identify a patient’s motor characteristics is required for 
individualized robot-aided reaching training.

A well-established rehabilitation process entails the 
evaluation of the progress and effect of robotic inter-
vention on an individual’s rehabilitation goals [10, 11]. 
Because the process would be directing an impaired task 
to progress toward a normal task [12–14], the evaluation 
of the RM needs to address the level of motor impair-
ment of the affected limb based on the individual’s pre-
stroke motor capacity, to demonstrate one’s reaching 
performance level relative to normalcy. Particularly, it is 
well known that understanding one’s desired recovery is 
a significant biomarker for prescribing the rehabilitation 
dose [15]. Hence, normal reaching characteristic infor-
mation, which varies across individuals [8], needs to be 
the standard that sets a basis for the patients’ current 
reaching performance.

Several studies have utilized evaluation methods based 
on kinematic characteristics for the upper-limb motor 
ability and function in post-stroke patients during robot-
aided therapy [9, 16–20] and have characterized the 
relative motor deficits of the affected limb in various 
directions or distances. However, they did not evaluate 
motor characteristics based on an individual’s normal 
performance; thus, the training effect was relatively eval-
uated before and after treatment, which does not con-
sider the individual’s rehabilitation goal [9, 16–20]. In 
contrast, evaluating a patient’s current performance 
based on their normal performance provides an individ-
ually scaled motor deficit, which results in an objective 
evaluation of the robot-aided therapeutic effect. There-
fore, it is necessary to understand the normal (original) 
reaching performance before stroke onset in a patient-
specific manner to enhance the evaluations of individual-
ized robotic reaching training.

However, it is unfeasible for patients to possess knowl-
edge or data on their quantified normal reaching perfor-
mance. Thus, an estimation method that can identify the 
before-onset reaching abilities of individuals is required. 

A plausible approach for estimating the patients’ nor-
mal reaching performance is to model the performance 
based on their less-affected arm; however, to the best of 
our knowledge, no such attempt has been made to date. 
Based on several studies that reported the similarity in 
motor performance between the post-stroke patients’ 
less-affected arms and healthy individuals’ arms [21–23], 
we posit that this approach could represent the normal 
reaching ability of post-stroke individuals. Here, the 
model needs to (1) represent one’s normal reaching abil-
ity well, and (2) not characterize one’s erroneous RM. 
Such a model can take task information (i.e., target dis-
tance) and human kinematic information (i.e., movement 
speed) as inputs and predict the movement time of the 
normal RM as an output.

Despite the above approach, the issue of how to model 
the less-affected arm persists. Several statistical mod-
els have captured quantifiable reaching characteristics 
[24–26]; however, to the best of our knowledge, there is 
no appropriate model for evaluating the normal RM of 
stroke. Fitts’ law, which is the most well-known reach-
ing model [24], has been applied to quantify the reaching 
performance of stroke survivors. Although this method 
was simple and feasible for motor recovery, the results 
showed model inaccuracy under Fitts’ law [27]. This poor 
accuracy of Fitts’ law was also indicated by another study 
that modeled the reaching-related movements of patients 
with cerebral palsy (CP) [26]. To improve accuracy, a 
novel model that showed good accuracy was devel-
oped for CP movements [26]. However, the model was 
too complex and was not validated by the RM of stroke 
survivors.

This study developed a novel evaluation method for 
individualized reaching training. We first identified a 
novel normal reaching model and formulated a method 
for evaluating motor deficits based on the proposed 
model of the less-affected arm. We then utilized the 
evaluated metrics to express an individual’s motor defi-
cit as a contour map of the workspace [19, 20]. To vali-
date the results, statistical analyses were conducted using 
experimental RM data collected from 12 healthy subjects 
and 19 patients with stroke. The results showed that the 
proposed method could enable individually scaled RM 
evaluation by comparing the performance of the affected 
arm with that of the normal reaching model of the less-
affected arm.

Methods
Individually scaled evaluation method
In this subsection, we present candidate reaching mod-
els for describing the normal RM and explain how we 
derived the normal reaching model for post-stroke 
patients. Subsequently, based on the model, we defined 
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the individually scaled performance index and visually 
mapped it for the evaluation method (Fig. 1).

Model formulation for normal reaching movement
Reaching models quantitatively describe an individual’s 
unique performance, and such models use kinematic 
variables as the inputs and yield the movement time as 
the outputs. To establish an appropriate normal reaching 
model, we first studied the characteristics of two exist-
ing models: Fitts’ law and a reaching-related model of 
CP [19–21]. We then deduced a normal reaching model 
using these models.

Fitts’ law, the best-known reaching model [24], is 
described as follows:

where TM denotes the movement time, A and W are the 
reaching target distance and width, respectively, and 
a and b are the intercept and slope of the linear model, 
respectively. Fitts’ law was not originally proposed to 
accurately capture the characteristics of RM, but instead 
focused on the speed–accuracy tradeoff in RM with 
various target sizes and lengths [24]. Hence, (1) contains 
only target-related environmental variables and does not 
include any behavioral variables (those related to an indi-
vidual’s behavior) that could also affect TM. For instance, 
there is no variable in (1) that reflects the fluctuation 
of the movement speed with the same target (A and 
W). Notably, the target size is usually fixed in a robotic 
reaching training task for rehabilitation because the 
fixed target size is recommended by Fitts’ law [28], and 
the speed–accuracy tradeoff is not the main issue [4, 20, 
28, 29]. This implies that (1) is insufficient to accurately 
model RM characteristics, and this was supported by an 
attempt to apply (1) to describe RM in stroke patients; 
the result showed poor modeling accuracy [27]. It should 

(1)TM = a+ b× log2
2A

W

be noted that there is another form of Fitts’ law, includ-
ing the error rate [30]. However, we did not use the form 
with the error rate to consider their impaired movement 
[20, 29, 31] because the robotic reaching tasks for post-
stroke patients have been a type of errorless form [30] of 
reaching, such as disc or pin transfer tasks [24, 32].

To improve and maximize the reaching modeling accu-
racy, one study reported a sophisticated reaching model 
that incorporated both environmental and behavio-
ral variables, even when considering erroneous human 
behaviors [26]. We refer to this model as the Almanji 
model, and it accounts for a reaching-related (mouse 
pointing) movement in CP and is expressed as follows 
[26]:

where AS denotes the average speed of movement; EC the 
erroneous clicks; NS the number of submovements [26]; 
NSO the number of slip-offs; CI the curvature index [26], 
and α,β , c, d, e and k are the model parameters. Model 
(2) is more appropriate than (1) in terms of the modeling 
accuracy. However, it still has limitations in the target 
movement and objective of the model. Regarding the for-
mer, the target movement of (2) was a mouse-pointing 
task; thus, (2) contained variables related to mouse clicks, 
including EC and NSO. However, our target reaching task 
does not require a mouse click to discriminate the suc-
cess of the task, hence EC and NSO were not of interest. 
Hence, model (2) must be simplified as follows:

Despite its simplicity, model (3) remains unsuitable 
because of the model objective of its original model (2); it 
does not aim to describe normal reaching, but rather RM 
with erroneous human behaviors. It is well known that 

(2)
TM =ek × Aα

× ASβ × (EC + 1)c

×(NS + 1)d × (NSO + 1)
e
× CIf

(3)TM = ek × Aα
× ASβ × (NS + 1)d×CIf

Fig. 1  Development process of individually scaled evaluation method. The blocks of the development procedures are denoted with marked circles 
in the following sections in Methods. Once an appropriate model for a normal RM is established, A.2 and A.3 are the general steps for utilizing the 
proposed evaluation method
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the normal RM (when one reaches the target without 
any erroneous behaviors) is ideally a straight movement 
with minimal submovement [26], and CI and NS in (2) 
can be considered constants (1 for CI and 3 for NS [33]). 
Therefore, the simplified model (3) was further modified 
to derive the normal reaching model as follows:

Equation (4) implies that TM of the normal reaching is 
determined by reaching the target distance (A) and aver-
age moving speed (AS). In contrast to Fitts’ law (1), the 
proposed model (4) includes AS. The effect of the moving 
speed variation during RM is considered to improve the 
modeling accuracy of normal RM. Notably, (4) does not 
include the target width (W) because of the fixed target 
size in the robotic reaching training task.

Evaluation method based on normal reaching model
Using the model above, we developed a novel individually 
scaled evaluation method for post-stroke patients; the 
method involves the following steps: (1) establishing an 
individual’s normal reaching model based on (4) of one’s 
less-affected arm (Fig.  2), (2) obtaining the estimated 
ideal movement time for normal reaching (TM,e) using 
the model, and (3) evaluating the reaching performance 

(4)TM = êk × Aα
× ASβ

of the affected arm by comparing TM,e with the actual 
movement time (TM,a). When TM,a significantly deviates 
from TM,e, the discrepancy implies that RM is abnormal 
because of the presence of erroneous behavior such as 
anomalous CI or NS, violating the definition of (4).

To identify an individual-specific normal reaching 
model using (4), we used several RM datasets of the 
less-affected arm in various directions and distances and 
conducted a multiple linear regression analysis. Here, 
we defined the arm ipsilateral to the lesion as the less-
affected arm and the contralateral arm as the affected 
arm in hemiplegia. Although the less-affected arms of 
stroke patients are not completely free from impair-
ment, they are expected to behave closer to the condi-
tion prior to stroke onset than the affected arm. One 
study reported that the movement time distributions of 
healthy participants’ arms and post-stroke participants’ 
less-affected arms were similar [21], and another study 
reported no significant differences in the movement time 
between healthy and post-stroke less-affected arms [22, 
23]. Hence, the RM data of the less-affected arm could 
be a reliable source for predicting an individual’s normal 
reaching unless one suffers from diplegic symptoms.

Using an established normal reaching model, we set an 
individually scaled standard for normal RM by estimat-
ing the ideal movement time (TM,e) for each condition. 

Fig. 2  Example linear regression fit for a reaching model. Reaching parameters such as the movement time ( Tm) , target distance (A) and average 
speed (AS) were logarithmically transformed. The colored plane represents the plane of the model parameters that fit the acquired data (gray dots)
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Subsequently, the actual movement time (TM,a) of the 
affected arm at the corresponding movement condition 
was compared to TM,e by defining a performance index 
normalized for error as follows:

where i denotes the index of the target. As the denomina-
tor term TM,e normalizes the discrepancy, the normalized 
error en (5) provides an individually scaled quantity that 
reflects the abnormality level. As the stroke reaching pro-
cedure is affected by sensorimotor noise [34, 35], the TM,a 
of the stroke would increase and exhibit more discrepan-
cies from TM,e.

Visualization of evaluation results
We constructed an evaluation map (Fig. 3) based on the 
acquired index en (5) throughout the workspace. A high 
deviation of the reaching trajectory, which is represented 
by a black arrow line, results in a high en , which is repre-
sented in the red-colored region according to the spec-
trum range.

The proposed visualization method allows the evalua-
tion of an individual’s motor characteristics and prescrip-
tion of performance-based training [4, 19, 36]; thus, we 
may implement adaptive scheduling to prioritize reach-
ing training and prevent overtraining of a satisfactory 
reaching condition, where the “labor in vain” problem 
could arise with random scheduling [36]. This visualiza-
tion is particularly beneficial in multi-distance-direc-
tional reaching training environments. Solely mapping 

(5)en(i) =
TM,a(i)− TM,e(i)

TM,e(i)

the reaching performance with the movement time can 
be problematic because a short movement time is gen-
erally preferred. Because further targets are likely to 
have long movement times, the training could be biased 
toward outer-most targets regardless of the actual reach-
ing performance in the workspace. In contrast, the pro-
posed visualization using the normalized index (5) can 
objectively portray the reaching performance globally in 
a spatial sense.

Experiments
Experimental design
We conducted two experiments to validate the proposed 
normal reaching model and verify the feasibility of the 
developed evaluation method. For the former, we com-
pared candidate reaching models including the Fitts (1), 
Almanji (3), and proposed (4) models by examining the 
fit degree of the RM data of the healthy subjects. This is 
because their reaching tasks could be considered normal. 
It should be noted that we used simplified (3) instead of 
(2), because our reaching task required fewer conditions 
than the original mouse-pointing task. For the latter, 
post-stroke subjects performed the reaching task with 
the less-affected and affected arms. We obtained each 
patient’s normal reaching model (4) based on the RM 
data of the less-affected arm and evaluated the perfor-
mance of the affected arm using the evaluation map with 
normalized error (5). Additionally, as a pilot study, we 
conducted the same procedures as the latter experiment 
with different post-stroke participants in an actual clini-
cal setting to further justify the proposed method in an 
actual clinical setting with a condensed procedure. Here, 
the participants performed fewer number of RM trials, 
which was sufficient to form reaching models and evalu-
ate the affected reaching.

Figure  4 shows the experimental setup used for the 
validation experiments. All subjects sat on a trunk-con-
straining chair and performed a visually guided reaching 
task with HapticMaster (MOOG, Netherlands), a three-
degrees-of-freedom (DOF) end-effector–type robot 
(Fig.  4a). The robot recorded the movement time, posi-
tion, and velocity of its end-effector for each RM trial at 
a 75-Hz sampling rate. Because the subjects rested their 
forearm on the gimbal of the robot, supporting their 
arm against gravity (Fig. 4c), the reaching task was con-
strained to motion with 2DOF. The robot was located 
30 cm between the gimbal and subject (Fig. 4a). The chair 
had a strap to constrain the trunk movement and prevent 
compensatory movements (Fig.  4d). For the reaching 
task, a monitor was set 3 m away from the seat (Fig. 4a), 
and the subjects performed start-to-target reaching 
according to custom-made visual guidance software 
developed in Visual Studio (Microsoft, USA) (Fig. 4b).

Fig. 3  Example assessment profile mapping. The color gradient 
represents the normalized error level defined by the proposed 
evaluation method. The blue and black arrows are the example 
trajectories of the normal and affected reaching, respectively, 
whereas the red and blue shades in the contour represent the 
affected and normal reaching performance on the reaching targets 
respectively
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Figure  5 shows the experimental setup of the pilot 
study. All subjects sat on a regular chair and performed 
a visually guided reaching task with rebless planar® 

(H-Robotics, South Korea),  a 2-DOF end-effector–type 
upper limb rehabilitation robot (Fig.  5a). The robot 
recorded the movement time, position, and velocity of 

Fig. 4  Experimental setup for validation experiments. a Visually guided reaching system with an end-effector–type robot. b Sample reaching 
targets in eight directions. c Gimbal with gravity-compensated forearm rest. d Trunk-constraining chair

Fig. 5  Experimental setup for the pilot study. a End-effector type upper-limb rehabilitation robot. b Sample reaching targets in eight directions. c 
Forearm rest of the rehabilitation robot
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its end-effector for each RM trial at a 30-Hz sampling 
rate. The subjects rested their forearm on the robot end-
effector to support their arm against gravity (Fig. 5c) and 
performed start-to-target reaching according to the cus-
tom-made visual guidance software developed in Unity 
(Unity Technologies, USA) (Fig. 5b).

Participants
For the validation experiments, twelve healthy 
(26.2 ± 2.7  years; two females, 10 males) and seven 
stroke survivors (58.4 ± 8.0  years; two females, five 
males) participated in this study (Table 1). All survivors 
had an affected arm on their right side. The inclusion 
criteria for stroke subjects were as follows: (1) hemiple-
gia; (2) unilateral stroke; (3) no signs of visual, spatial, 
or sensory deficits; and (4) mini-mental status examina-
tion scores greater than 24, indicating that the subjects 

could understand the instructions for the experiments. 
The exclusion criteria were as follows: (1) habitual 
shoulder dislocation; (2) musculoskeletal disorders; and 
(3) Parkinson’s disease, aphasia, apraxia, diabetes. This 
study was approved by the local institutional review 
board (DGIST-150408-HR-008- 02).

Twelve stroke survivors (67.5 ± 6.8  years; four 
females, eight males) participated in this pilot study 
(Table  2). Six stroke survivors had an affected arm on 
their right side. The inclusion criteria for the stroke 
subjects were as follows: (1) hemiplegia, (2) upper limb 
modified Ashworth scale score < 3, and and (3) post-
stroke age > 19  years. The exclusion criteria were as 
follows: (1) cognitive deficits or aphasia, (2) internal 
medical conditions, (3) neurological or musculoskeletal 
disorders, and (4) other conditions that inhibit upper-
limb rehabilitation exercises. This study was approved 

Table 1  Participants details of affected arm in validation experiments

MAS denotes modified Ashworth scale; MMT manual muscle test; MBC modified Brunnstrom classification; and H and I are hemorrhagic and ischemic stroke, 
respectively

Subjects Sex Age Time since 
stroke 
[months]

Lesion type MAS MMT MBC

Shoulder Elbow Wrist Finger Shoulder Elbow Wrist Finger

S1 M 57 88 H 0 0 0 0 4 +  4 +  4 +  4 +  6

S2 F 58 86 H 1 +  1 +  1 +  1 +  3 +  3 +  2- 2 − 4

S3 M 63 38 H 2 +  2 +  2 +  2 +  3 +  3 +  3 +  3 +  5

S4 M 39 110 I 2 2 2 2 2 +  3 0 0 1

S5 M 58 113 H 1 1 1 1 2 +  2 0 0 1

S6 F 59 41 H 1 − 1 − 1 − 1 − 3 +  3 +  3 − 3 +  4

S7 M 61 19 I 0 0 0 0 4 − 3 +  4 4 6

Table 2  Participant details of affected arm in pilot study

FMA-UE denotes Fugl-Meyer upper extremity assessment; MAS modified Ashworth scale; H and I hemorrhagic and ischemic strokes, respectively; and L and R denote 
the left and right sides, respectively

Subjects Sex Age Time since 
stroke 
[months]

Lesion type Hemi-side MAS FMA-UE

Elbow flexor Elbow 
extensor

Wrist flexor Wrist 
extensor

P1 M 69 52 I L 1.5 0 1 0 42

P2 F 65 81 H R 1 0 0 0 39

P3 M 64 72 H L 1 0 1 0 39

P4 F 61 96 I R 0 0 0 0 41

P5 M 67 78 I R 0 0 0 0 43

P6 M 81 124 I R 1 0 0 1 40

P7 M 54 61 H R 2 0 0 0 33

P8 M 74 111 I L 1.5 0 1.5 0 33

P9 M 70 104 I L 2 0 1.5 1 38

P10 F 67 121 H R 1 0 1.5 0 25

P11 F 63 75 H L 0 0 0 0 35

P12 M 75 113 I L 0 0 0 0 34
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by the institutional review board of Asan Medical 
Center (IRB No. 2022-0981).

It is noteworthy that the stroke survivor group was 
older than the healthy group while there were no inclu-
sion/exclusion criteria for this age difference. Older 
adults generally have longer movement times [37, 38], 
more variable velocities [39] and more corrective move-
ments [40] than young subjects.

Protocols
In the validation experiments, the subjects sat on a trunk-
constraining chair to which a strap was attached (Fig. 4d). 
The subject’s arm was secured using a gimbal (Fig.  4c). 
On the monitor, a cursor representing the position of 
the robot was displayed at the center, which was the ini-
tial position for the center-out reaching task (Fig.  4b). 
For each visually guided reaching task, the subjects 
were asked to move the cursor on the monitor to reach 
the target at their preferred speed (Fig.  4b). The reach-
ing task consisted of three blocks of 40 different move-
ment conditions (eight directions, five target distances), 
resulting in 120 trials (Table 3). For each block, the target 
randomly appeared once at every possible location. Once 
the cursor remained in the target position for 1 s, the trial 
was considered successful, and the robot returned the 
subject’s arm to the initial position. The reaching comple-
tion time was not constrained, and pauses or corrective 
movements were allowed. However, certain reaching tri-
als were skipped if the subjects could not reach the tar-
get. The subjects were instructed to restrain their trunk 
movements during the reaching task and were given a 
rest period between blocks. The healthy subjects per-
formed the reaching task with their dominant arm, 
whereas the stroke subjects performed the task with both 
the less-affected and affected arms. For the pilot study, 
the protocols were different in the chair setting and num-
ber of reaching trials. The subjects sat on a regular chair 
(Fig. 5a); instead, they were asked to constrain their trunk 
movements as much as possible. When conducting the 
pilot study, we recognized that the model formulation did 
not require all 120 trials of the RM data. Thus, in the pilot 

study, the reaching task consisted of blocks of 24 different 
movement conditions (eight directions, three target dis-
tances), resulting in 24 trials for the less-affected arm and 
48 trials for the affected arm (Table 3).

Data analysis
During the reaching task, we collected the movement 
time, position, and velocity and post-processed the col-
lected data to obtain other kinematic variables, such AS, 
CI, and NS. It should be noted that we calculated NS 
using the optimal submovement decomposition method 
to avoid exaggeration [33].

In the normal reaching modeling process, we rejected 
the RM data with outlier CI beyond two interquartile 
ranges (Q1–Q3). Notably, the number of reaching tri-
als used and the number of the outliers were 115.0 ± 3.1, 
5.0 ± 3.1 for the healthy participants, 107.8 ± 13.2, 
7.3 ± 3.5 for the post-stroke participants in the validation 
experiment, and 23.4 ± 0.8, 0.6 ± 0.8 for the pilot study, 
respectively. It is well-known that CI is a dominant con-
tributor to human effects on goal-directed movements 
[26]. We considered that such an extremely high CI rep-
resented reaching by mistake, which would not be nor-
mal reaching.

To evaluate RM using (5) based on the discrepancy 
between normal and erroneous RM, an appropriate nor-
mal reaching model must have the model characteristics: 
the model should identify normal RM, but it should not 
accurately identify reaching with erroneous behaviors. 
Hence, we analyzed the RM data to validate the proposed 
model (4) using the following steps. First, we evaluated 
the candidate reaching models using healthy RM data to 
determine whether the models could predict the healthy 
movement time, which is identical to the movement 
time of normal reaching. For this, we adopted the Akaike 
information criterion (AIC) and coefficient of determina-
tion (R2) for each model. Along with R2, which provides 
a general idea of how well a model fits the data (larger 
indicates a better fit), AIC, which measures the predictive 
accuracy of the model (smaller indicates higher accuracy) 
[41, 42], has been used for model selection studies involv-
ing human movement [26, 43]. Using the same indices 

Table 3  Summary of experiment configuration

Experiments Validation experiments Pilot study

Participants Healthy (n = 12) Post-stroke (n = 7) Post-stroke (n = 12)

Target directions Eight directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°)

Target distances Five distances (6, 8, 10, 12, and 14 cm) with fixed target width (2 cm) Three distances (6, 10, and 
14 cm) with fixed target width 
(3 cm)

Number of reaching trials 120 trials with the dominant arm 120 trials with less-affected arm
120 trials with affected arm

24 trials with less-affected arm
48 trials with the affected arm
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(AIC and R2), we validated the candidate models using 
the RM data of the less-affected and affected arms of the 
stroke patients to determine whether the patients’ data 
could be used to formulate a normal reaching model.

Moreover, using the affected RM data, we further 
inspected model fitting to determine whether the can-
didate models identified erroneous reaching because 
we posited that an appropriate normal reaching model 
would not predict erroneous reaching movement times. 
We first constructed reaching models with the affected 
RM data to predict the movement time of the affected 
reaching (TM,aff) and observed the relationship between 
the residuals (TM,a − TM,aff) and error-related parame-
ters (NS and CI). It should be noted that varying NS and 
larger CI values were associated with erroneous reaching. 
We then calculated the mean magnitude of the residu-
als for each model to compare the model fitting in the 
erroneous reaching, where a low magnitude indicates an 
accurate model fitting in the affected reaching, which is 
not preferred for the normal reaching model.

The model parameters were estimated using linear 
regression with logarithmic transformation, in which 
the movement time was the independent variable. All 
regression analyses, including R2 and statistical tests for 
AIC (non-parametric tests: Friedman test and Wilcoxon 
signed-rank test), were conducted using IBM SPSS (IBM 
Corporation, USA). AIC was calculated using the fitlm 
function in MATLAB R2020b (MathWorks, USA).

After validating the proposed normal reaching model, 
we visualized the reaching evaluation results for stroke 
based on en (5) as well as Tm,a (movement time) using 
MATLAB in both the validation experiments and pilot 
study. For the former visualization with en , the spectrum 
range of the map (blue to red) was set to the minimum en 
and 95th percentile value was set as the maximum. This 
clipped maximum prevents an extremely high en from 
an overly inflated axis range, which does not capture the 
overall reaching characteristic. We used the mean of en(i) 
obtained by repeated reaching tasks to ensure better reli-
ability. Additionally, we visualized the contours based on 
the Tm,a with the same data used for the corresponding en 
maps to show the distinctiveness of the proposed index 
en.

Results
Normal reaching model performance
Predictive accuracy
Table 4 summarizes the AIC and R2 values for each can-
didate model in the validation experiments. As shown in 
Fig. 6a, the average AIC of all the models in the healthy 
reaching group was significantly different (p < 0.01). The 
proposed (4) and Almanji (3) models showed a negative 
AIC, whereas Fitts’ (1) model was the only model that 

resulted in a positive AIC (Fig.  6a). This trend between 
the models was also noted in the patients’ with less-
affected reaching, for which all models were significantly 
different (p < 0.05) (Fig. 6b).

Figure 6c compares the average AIC of each model in 
the less-affected and affected groups. Although Fitts and 
Almanji models showed no significant difference in the 
AIC between the less-affected and affected reaches, the 
proposed model showed a significant difference (p < 0.05; 
Fig. 6c). This implies that the predictive accuracy of the 
proposed model is affected by the presence of errone-
ous behavior, whereas Fitts and Almanji methods were 
not, which corresponds to the results of the pilot study 
(Table 5, Fig. 6d).

Regression analysis
Regarding R2 in the healthy subjects in the validation 
experiments, both the Almanji and proposed mod-
els indicated a very strong fit for all subjects (R2 > 0.7) 
(Fig. 7a), whereas that of the Fitts’ model showed a strong 
fit for six out of 12 subjects (Fig.  7a). However, the R2 
of the models for stroke differed from that of healthy 
reaching. For the less-affected RM, Fitts’ model had only 
one strong fit out seven subjects (Table  4, Fig.  7b). The 
Almanji (12 out of 12) and proposed (6 out of 7) models 
still resulted in an overall strong goodness of fit for the 
less-affected reaching data, which implies that both mod-
els are potential candidates for explaining the normal 
reaching of the less-affected arm. The overall trend was 
the same as that in the pilot study results. For the less-
affected RM, Fitts’ model had only two strong fits out 
of 12 subjects (Table 5, Fig. 7c). The Almanji (12 out of 
12) and proposed (10 out of 12) models still resulted in 
an overall strong goodness of fit for the less-affected RM 
data.

For the affected RM in the validation experiments, 
none of the Fitts’ models indicated a strong fit in terms 
of the R2 values, whereas the Almanji model resulted in 
a strong fit in all subjects (Table 4, Fig. 7b). The proposed 
models showed a strong fit in two out of the seven sub-
jects. This suggests that the R2 of the proposed model 
was notably weakened in terms of fitting the erroneous 
reaching movement times. The Almanji model can also 
explain the erroneous behaviors, and it is undesirable 
for the intended normal reaching model. The pilot study 
result of the affected arm also indicated that the Almanji 
model resulted in a strong fit in all subjects, and the pro-
posed model showed a strong fit in four out of 12 sub-
jects (Table 5, Fig. 7c).

Table  6 summarizes the R2 values of the proposed 
model and average kinematic data for each post-stroke 
participant. The table presents the relationship between 
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the severity of erroneous RM and the goodness of fit of 
the proposed model.

Model fitting in erroneous RM (residuals)
Considering the model performance for erroneous RM, 
Fig.  8 shows the relationship between the residuals of 
each model and the erroneous reaching-related param-
eters (NS and CI) in all the affected RM data. First, the 
bottommost boxplots presented in Fig.  8 show that NS 
and CI were mostly distributed over 2–7 and 1–3.5, 

respectively, suggesting that the affected RM data con-
tained many erroneous reaching behaviors. The same 
data were projected onto boxplots of the model residu-
als on the left (Fig. 8). For Fitts’ model and the proposed 
model, the variances of the residuals were significant 
(Fig.  8), and the residual variances of all subjects were 
relatively large (650 and 590  ms, respectively). How-
ever, with negligible variance, the residual variance for 
Almanji was notably small (40 ms) compared to those of 
the other two models. From this, we interpret that the 

Table 4  AIC and R2 values of candidate models in validation experiments

AIC denotes Akaike information criterion; R2 denotes the coefficient of determination

Participants AIC R2

Fitts’ Almanji Proposed Fitts’ Almanji Proposed

Healthy

 H1 1551 − 914 − 288 0.605 0.999 0.798

 H2 1558 − 924 − 329 0.612 0.999 0.79

 H3 1623 − 908 − 357 0.678 0.999 0.928

 H4 1630 − 840 − 295 0.58 0.999 0.856

 H5 1555 − 977 − 477 0.859 0.999 0.974

 H6 1454 − 906 − 373 0.803 0.999 0.92

 H7 1579 − 941 − 330 0.577 0.999 0.847

 H8 1580 − 908 − 308 0.707 0.999 0.873

 H9 1417 − 937 − 402 0.718 0.999 0.855

 H10 1379 − 934 − 398 0.797 0.999 0.903

 H11 1557 − 736 − 341 0.66 0.999 0.854

 H12 1450 − 972 − 408 0.782 0.999 0.908

Stroke: Less-affected

 S1 1585 − 502 − 360 0.579 0.982 0.934

 S2 1658 − 829 − 262 0.55 0.999 0.891

 S3 1778 − 656 − 106 0.314 0.998 0.762

 S4 1451 − 336 − 335 0.752 0.847 0.841

 S5 1594 − 866 − 352 0.527 0.999 0.933

 S6 1635 − 849 − 132 0.385 0.999 0.509

 S7 1637 − 822 − 157 0.436 0.999 0.701

Stroke: Affected

 S1 1743 − 756 − 208 0.513 0.999 0.846

 S2 1882 − 733 3 0.143 0.999 0.509

 S3 1757 − 664 9 0.186 0.999 0.444

 S4 1558 − 441 − 253 0.227 0.972 0.846

 S5 893 − 425 − 50 0.005 0.999 0.45

 S6 1885 − 648 54 0.111 0.999 0.339

 S7 1645 − 748 − 80 0.39 0.999 0.565

Fig. 6  Comparison of average Akaike information criterion (AIC) for the candidate models. a and b show the model comparisons in the healthy 
and less-affected reaching movement (RM), respectively in the validation experiments. c Comparison of average AIC for the candidate models 
between the less-affected and affected arms within stroke patients in the validation experiments. d Comparison of average AIC for the candidate 
models between the less-affected and affected arms within the stroke patients in the pilot study (asterisks indicate significant differences; *p < 0.05, 
**p < 0.01)

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Almanji model cannot distinguish the affected reaching 
with erroneous behaviors from normal reaching, and we 
observed that the residual characteristics were the same 
in the pilot study (Fig. 9).

Overall, the proposed model is the most appropriate 
for the normal reaching model for the following rea-
sons: (1) Fitts’ law was the least able to explain healthy 
and less-affected data among the candidate models; (2) 
the Almanji model best estimated the reaching move-
ment time, followed by the proposed and Fitts’ models, 
but it even accurately captured the erroneous RM; (3) 
the proposed model had sufficient ability to explain the 
movement time for healthy and less-affected reaching, 
while the model did not explain the affected RM, as we 
intended.

Evaluation visualization
Based on the proposed model, we profiled the RM 
evaluation results of every post-stroke subject by 

contouring en and Tm,a for all movement conditions 
in the workspace (Figs.  10, 11). Each en map of the 
affected side uniquely portrays the reaching charac-
teristics of individuals at specific distances and direc-
tions, in which erroneous reaching was emphasized in 
yellow and red (Figs.  10 and 11). The movement time 
maps using  Tm,a portrayed a tendency of higher Tm,a 
on the targets of further distances, and the correspond-
ing en map still captured the affected movements in the 
targets with shorter distances (S1, S2, S3, S4, and S7 in 
Fig.  10; all participants except P11 in Fig.  11). Nota-
bly, all individuals had different scales of the spectrum 
range for the contours, which reflected the inter-sub-
ject severity of the affected arm. Specifically, S1 and S7 
in Fig. 10 and P1, P4 and P6 in Fig. 11 have compara-
bly small scales; therefore, the affected maps seem to 
have abnormal motor characteristics globally. S5 shows 
a case in which the affected RM data were severely 
impaired with a significantly constrained workspace 
(Fig. 10). The visualization clearly shows that he could 

Table 5  AIC and R2 values of candidate models in pilot study

AIC denotes Akaike information criterion; R2 denotes the coefficient of determination

Participants AIC R2

Fitts’ Almanji Proposed Fitts’ Almanji Proposed

Stroke: Less-affected

 P1 335 − 158 − 55 0.570 0.997 0.752

 P2 349 − 176 − 72 0.860 0.999 0.959

 P3 331 − 178 − 63 0.572 0.999 0.776

 P4 350 − 188 − 71 0.774 0.999 0.941

 P5 421 − 171 − 13 0.264 0.999 0.768

 P6 395 − 170 − 26 0.321 0.999 0.783

 P7 326 − 163 − 59 0.599 0.997 0.745

 P8 363 − 130 − 20 0.479 0.996 0.515

 P9 357 − 148 − 25 0.203 0.997 0.436

 P10 367 − 178 − 54 0.385 0.999 0.872

 P11 384 − 181 − 30 0.579 0.999 0.835

 P12 358 − 170 − 57 0.584 0.999 0.875

Stroke: Affected

 P1 352 − 179 − 39 0.420 0.999 0.603

 P2 419 − 121 8 0.398 0.998 0.505

 P3 334 − 193 − 44 0.634 0.999 0.673

 P4 391 − 177 − 30 0.570 0.999 0.828

 P5 407 − 156 − 6 0.255 0.999 0.572

 P6 353 − 166 − 48 0.584 0.999 0.814

 P7 372 − 149 − 13 0.233 0.998 0.295

 P8 384 − 150 − 12 0.160 0.999 0.446

 P9 380 − 157 − 9 0.208 0.999 0.394

 P10 362 − 174 − 38 0.480 0.999 0.769

 P11 423 − 161 12 0.023 0.999 0.204

 P12 362 − 149 − 31 0.635 0.999 0.733
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Fig. 7  Comparison of model R2. The boxplot represents the distribution, and the scatter plot represents the actual R2. (a) and (b) present the R2 
distributions in healthy models and between less-affected and affected models in the validation experiments, respectively. (c) The boxplot and 
scatter plot represent the actual R2 distribution in the pilot study. The red-dashed line represents R2 of 0.7 indicating a widely accepted level of 
strong model fitting (the higher the value, the better)
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not reach more than half of the targets, particularly 
those near the trunk.

Discussion
In this study, we developed a novel, individually scaled 
RM evaluation method. We first determined that the 
proposed reaching model (4) is the most appropriate for 
identifying normal reaching and is valid for describing 
both healthy and less-affected RM. Using (4) and (5), we 
intuitively characterized the impaired (affected) reaching 
condition through the discrepancy between the actual 
RM performance and the individual’s predicted normal 
performance.

Several statistical goal-directed movement models are 
applicable to describing RM. However, they are not fully 
compatible for distilling an individual’s normal reaching 
model [24, 26]. One study utilized Fitts’ law to assess an 
individual’s reaching ability to control reaching train-
ing difficulty, but its reliability was inconsistent among 
the participants for the less-affected and affected arms 
[27]. This result corresponded to our results (Fig.  7b, 
and c); Fitts’ law was unsuitable for describing the nor-
mal and less-affected RM than the other models. It is 
noteworthy that the validity of Fitts’ law in a multi-
directional environment is still contradictory depending 
on the studies [44, 45], however, Fitts’ law is representa-
tive of goal-directed movements as a candidate model 

[24, 46]. Another study reported a reaching-related 
(Almanji) model that consisted of sophisticated human 
effect variables related to mouse click movement in 
CP, not stroke reaching [26]. The Almanji model could 
be modified to (3) to explain the RM, and we observed 
that this model had the strongest prediction accuracy 
for explaining individual reaching (Figs.  6 and 7). How-
ever, the Almanji model could accurately fit the affected 
RM, which opposes the purpose of the intended normal 
reaching model (Fig. 7b and c). Further analysis indicated 
that the Almanji model predicted the movement time of 
the affected RM too accurately regardless of NS and CI, 
which are related to erroneous reaching (Figs. 8 and 9).

In this study, we deduced that normal reaching can be 
explained using the proposed model, which consists of 
AS and the target distance only (Figs.  6a and 7a). This 
finding could also be supported by the Almanji study 
for point-click tasks; the model components for healthy 
subjects were governed by the AS, CI, and target distance 
[26]: therefore, ideally performed RM could be modeled 
without CI.

When the normalized error en of (5) was developed, 
we assumed that the less-affected reaching could be 
regarded as a reliable source of the individuals’ normal 
reaching ability. Figure  12 summarizes the R2 results of 
the proposed model for the normal (healthy) and less-
affected reaching in both the validation experiments 

Table 6  R2 values of the proposed model and the average kinematic data for each post-stroke

TM denotes movement time; AS the average speed; CI the curvature index; and NS denotes the number of submovements

Participants Less-affected Arm Affected Arm

R2 TM [ms] AS [m/s] CI NS R2 TM AS [m/s] CI NS

S1 0.934 1894 0.046 1.11 2.81 0.846 2233 0.042 1.16 3.11

S2 0.891 2221 0.040 1.12 2.61 0.509 2917 0.037 1.27 3.64

S3 0.762 2231 0.041 1.11 3.41 0.444 2332 0.046 1.33 3.74

S4 0.841 1669 0.057 1.1 2.77 0.846 1862 0.052 1.12 3.04

S5 0.933 1868 0.047 1.12 2.84 0.45 1755 0.060 1.47 3.63

S6 0.509 1755 0.055 1.28 3.34 0.339 2502 0.056 1.68 3.77

S7 0.701 1753 0.056 1.27 3.53 0.565 1867 0.056 1.37 3.78

P1 0.752 2766 0.041 1.14 3.29 0.603 2877 0.042 1.23 3.38

P2 0.959 3744 0.028 1.06 3.33 0.505 4978 0.033 1.75 3.48

P3 0.776 2689 0.044 1.21 2.83 0.673 2680 0.055 1.54 3.44

P4 0.941 3493 0.031 1.13 2.79 0.828 4628 0.024 1.14 3.31

P5 0.768 3682 0.037 1.34 3.46 0.572 3914 0.034 1.32 3.25

P6 0.783 3183 0.037 1.16 2.65 0.814 2896 0.043 1.27 3.15

P7 0.745 2517 0.044 1.14 2.83 0.295 2773 0.048 1.41 3.27

P8 0.515 2802 0.055 1.57 3.25 0.446 3066 0.059 1.92 3.06

P9 0.436 2215 0.061 1.41 3.09 0.394 2795 0.060 1.77 3.4

P10 0.872 2921 0.043 1.26 3.13 0.769 3136 0.040 1.28 3.13

P11 0.835 3786 0.034 1.26 3.27 0.204 3495 0.067 2.84 3.58

P12 0.875 3287 0.035 1.18 3.17 0.733 3209 0.042 1.39 3.38
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Fig. 8  Relationship between residuals of each candidate model and erroneous reaching parameters from the affected side of post-stroke patients 
in the validation experiments. Erroneous reaching movement parameters are the number of submovment (NS) and curvature index (CI). Every 
reaching data point is projected to the boxplots to portray the distributions. In the presence of erroneous behaviors (high NS and CI), Fitts’ model 
and the proposed model formulated by the reaching data of the affected arms result in high model residuals, whereas the Almanji model have low 
model residuals
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Fig. 9  Relationship between residuals of each candidate model and erroneous reaching parameters from the affected side of post-stroke patients 
in the pilot study. Similar to the post-stroke data of the validation experiments, Fitts’ model and the proposed model formulated by the reaching 
data of the affected arms result in high model residuals, whereas the Almanji model have low model residuals
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Fig. 10  Reaching profile of post-stroke participants for the affected sides in the validation experiments. Each profile has the information of 40 
targets distributed over five distances and eight directions grids in the reaching movement time and normalized error. Each subject had a different 
normalized error range. Non-colored areas represent unreachable targets
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and pilot study. The proposed model obtained from 
less-affected reaching was sufficient for normal reach-
ing. Most R2 values (16 of 19) lie near 0.7, which shows 
a strong fit of the regression model in both the validation 
experiment and pilot study (Fig. 12). Even the weak cases 
of the model (S6: R2 = 0.509, p < 0.001; P8: R2 = 0.515, 
p < 0.001; P9: R2 = 0.436, p < 0.001) also showed a moder-
ately good fit [47] (Table  6, Fig.  12). It should be noted 
that the weakest fit in the less-affected reaching (S6) of 
the validation experiment would come from a large vari-
ation in CI (1.23 ± 0.25) and NS (3.48 ± 1.22) for which, 
in fact, both variances were the largest among all less-
affected reaching for stroke participants in the valida-
tion experiment (Table  6). Similarly, P8 and P9 in the 

pilot study showed large variations in CI (P8: 1.57 ± 0.45, 
P9: 1.41 ± 0.28) and NS (P8: 3.25 ± 1.07, P9: 3.09 ± 0.90). 
These weak-case scenarios show the potential limitations 
of the proposed method when both arms are notably 
affected. It is noteworthy that the reaching performance 
between the less-affected arm of the post-stroke and the 
normal movement of the typical control group could 
differ depending on the severity of the patients. Some 
studies reported that the less-affected arm has deficits 
in cases of more severe and acute participants [48–50], 
whereas the mild to moderate stroke group showed no 
discrepancies in kinematics compared to the healthy con-
trol group [21–23].

Fig. 11  Reaching profile of post-stroke participants for affected sides in the pilot study. Each profile has the information of 24 targets distributed 
over three distances and eight directions grids in the reaching movement time and normalized error. Each subject had a different normalized error 
range



Page 19 of 22Moon et al. Journal of NeuroEngineering and Rehabilitation           (2023) 20:66 	

After establishing the normal reaching model, we 
used the normalized error (5) as the index to evaluate 
the affected RM for the following reasons: (1) The index 
intuitively presents the discrepancy between the actual 
reaching performance and model-predicted normal per-
formance, which can reflect the degree of abnormality. 
Moreover, (2) it is a consolidated single parameter that 
consists of multidimensional information, such as the 
target distance, AS, CI, and NS, making it easier to inter-
pret. In addition, (3) thanks to the normalization, the 
index, which is no longer biased to the effect of the target 
distance, is especially advantageous in a multi-distance-
directional reaching training environment.

Several studies have reported evaluation methods for 
spatial profiling the reaching characteristics using indi-
ces (i.e. movement time); these visual representations 
have been used to prescribe adaptive training according 
to individual characteristics and evaluate performance 
changes before and after reaching training [4, 9, 19, 20]. 
In this study, we extended the performance mapping 
methods using a model-based index (5), en . Mapping 
only the RM performance with movement time can be 
problematic in a multi-distance-directional environ-
ment because a short movement time is generally pre-
ferred. Because further targets are likely to have long 
movement times, the training prescription based on the 
movement time could be biased toward the outer-most 

targets regardless of the actual RM performance in the 
workspace (Figs.  10 and 11). In contrast, the proposed 
method based on the normalized error en can objectively 
portray the RM performance globally in a spatial sense 
regardless of the distance (Figs.  10 and 11), allowing us 
to objectively prescribe training priorities in the reaching 
environment.

Here, we presented only static characteristics by map-
ping, but the method could be extended to address tem-
poral changes in the characteristics as well. For instance, 
during RM training, changes in index en (5) can be 
observed, as a previous study demonstrated a learning/
fatigue model in the movement time within a reaching 
training session [51]. However, the sole movement time 
does not provide a cue on when to terminate the train-
ing, whereas the normalized error provides a sense of 
desired recovery. Therefore, if a subset that reaches the 
target achieves the desired recovery (small en ), prospec-
tive training can prescribe different subsets that maxi-
mize the recovery opportunities.

Our evaluation method was primarily developed by 
considering robot-aided RM training; however, this 
application could be extended to general reaching train-
ing because it utilizes only the kinematic data of RM. In 
addition to robots, sensors that can measure and esti-
mate the kinematic data of the hand, such as the touch 
screen, red/green/blue and depth sensors, and inertial 

Fig. 12  R2 distribution of the proposed model in healthy and less-affected conditions (redrawn from Fig. 7)
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measuring units, are feasible for implementing the evalu-
ation method [8, 51–55]. Hence, the proposed evalua-
tion method can improve conventional reaching training 
using quantifiable records obtained from sensors. As an 
eventual goal, the proposed evaluation method can ena-
ble individualized robot-aided RM training.

This study has several limitations. First, the number 
of trials required to construct a normal RM model was 
not optimized. In the validation experiments, 120 reach-
ing trials were used for concrete validation, and we con-
ducted 24 and 48 trials for the pilot study. In future, we 
need to develop a systematic method for determining the 
number to form a valid normal RM for clinical applica-
tions. Next, the normal reaching model could be unsuit-
able for evaluating the affected RM if the less-affected 
arm of hemiplegic patients showed less model reliability 
as shown in S6 (Table 4). Although this was an uncom-
mon case, we may need to develop additional algorithms 
(i.e., clustering) to detect normal reaching trials more 
selectively and enhance the feasibility of the proposed 
method. Finally, our results were verified using a lim-
ited number of participants (12 healthy and 19 stroke 
patients). Hence, further studies with larger popula-
tions could enhance the validity of the proposed method 
against unconsidered kinematic variabilities, such as the 
effect of arm dominance, with sufficient statistical power.

Conclusions
In this study, we developed a novel individually scaled 
RM evaluation method based on a normal reaching 
model. We first validated that the proposed reaching 
model can determine the normal RM of both healthy and 
less-affected RM. Using the proposed index, we could 
intuitively visualize the individual (affected) RM condi-
tion through the discrepancy between the actual RM 
performance and individual’s predicted normal perfor-
mance. Furthermore, our method has the potential to 
provide effective adaptive training by prioritizing a set of 
reaching movements spatially and terminating satisfac-
tory reaching movements.
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