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Abstract 

Background  In the recent past, wearable devices have been used for gait rehabilitation in patients with Parkinson’s 
disease. The objective of this paper is to analyze the outcome of a wearable hip orthosis whose assistance adapts 
in real time to the patient’s gait kinematics via adaptive oscillators. In particular, this study focuses on a metric charac-
terizing natural gait variability, i.e., the level of long-range autocorrelations (LRA) in series of stride durations.

Methods  Eight patients with Parkinson’s disease (Hoehn and Yahr stages 1 −2.5) performed overground gait train-
ing three times per week for four consecutive weeks, assisted by a wearable hip orthosis. Gait was assessed based 
on performance metrics such as the hip range of motion, speed, stride length and duration, and the level of LRA 
in inter-stride time series assessed using the Adaptive Fractal Analysis. These metrics were measured before, directly 
after, and 1 month after training.

Results  After training, patients increased their hip range of motion, their gait speed and stride length, and decreased 
their stride duration. These improvements were maintained 1 month after training. Regarding long-range autocorrela-
tions, the population’s behavior was standardized towards a metric closer to the one of healthy individuals after train-
ing, but with no retention after 1 month.

Conclusion  This study showed that an overground gait training with adaptive robotic assistance has the potential 
to improve key gait metrics that are typically affected by Parkinson’s disease and that lead to higher prevalence of fall.

Trial registration: ClinicalTrials.gov Identifer NCT04314973. Registered on 11 April 2020.
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Introduction
Gait disorders cause major issues for patients with Par-
kinson’s disease, starting in the early stages of the dis-
ease [1]. In particular, patients may have a hypokinetic 
gait, characterized by a slower gait speed and shorter 
stride length [2]. These gait disorders are associated with 
upcoming falls [3]. Indeed, the risk of falling is twice 
as likely in patients with Parkinson’s disease as in age-
matched healthy individuals [4]. This can lead to a fear of 
falling in some patients, which induces them to decrease 
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their physical activities, and thus affects their independ-
ence and quality of life [5].

There exist several physical therapies in order to delay 
and/or mitigate the impact of these motor disorders, 
ranging from regular physiotherapy to dance [6]. Taking 
advantage of advances in research on robot-assisted gait 
training for other pathologies, the last decade has also 
seen the emergence of studies on the rehabilitative effects 
of these therapies on the gait of patients with Parkin-
son’s disease. In these studies, patients were trained with 
a robot moving their legs following a stereotyped kine-
matic pattern. These studies used treadmill exoskeletons, 
such as the Lokomat® (Hocoma, Zurich, Switzerland), 
or end-effector systems, such as the Gait Trainer GT1 
(Reha-Stim, Berlin, Germany) or the G-EO (Reha Tech-
nology, Olten, Switzerland). They showed an increase in 
gait speed [7–19], in stride length [7, 8, 10, 12, 13, 15–
17] and in cadence [8, 12, 13, 17], as well as a decrease in 
motor symptoms [8, 11–14, 19] and an increase in endur-
ance [9, 16, 18, 19]. Some of these improvements were 
maintained between 1 and 6 months after training [8, 9, 
14, 16]. Some hypotheses on how these therapies influ-
ence these gait metrics have been put forward. Firstly, it 
could act as an external rhythmic cue on which patients 
can focus, thus compensating for the defective inter-
nal rhythm of the basal ganglia. Secondly, the repetition 
of gait-like movements might enhance the activation of 
automatic spinal control of locomotion. Finally, robot-
assisted gait training also induces an increased physical 
activity, therefore strengthening the lower-limb muscles 
of patients as well as their cardiovascular status [20, 21].

More recently, studies have been conducted with wear-
able exoskeletons that can be used in more ecological 
environments, such as the hip orthosis SMA (Honda 
R&D, Tokyo, Japan), or the knee orthosis Keeogo Rehab™ 
(B-Temia, Quebec, Canada). A training of 10 overground 
sessions with the hip orthosis improved gait endurance, 
metabolic cost and motor symptoms of patients [22]. On 
the other hand, with the knee orthosis, patients improved 
their cognitive and physical functions while wearing it, 
but they did not increase their gait speed after training 
[23]. These wearable devices offer the advantage of ena-
bling to study their effects outside a treadmill, which 
has been shown to significantly influence the way peo-
ple walk [24]. Moreover, they allow to be used not only 
in rehabilitation protocols, but also for assistance, since 
they open the perspective to be worn in everyday life, at 
least for the most affected patients.

This wearability is particularly interesting in the assess-
ment of the level of long-range autocorrelations (LRA) 
in series of stride durations. The presence of LRA in 
these series captures that the duration of the current 
stride statistically depends on all those that happened in 

the past [25]. The precise origin of the presence of LRA 
in the locomotor system is still debated. Several studies 
hypothesized that it may arise from the complex coordi-
nation and interaction of various components and sub-
systems within this system, acting at different time scales 
[26, 27]. Moreover, this system being redundant, i.e., its 
components can be used interchangeably for the same 
task [27], it is adaptable and robust to both internal and 
external disturbances, such as minor variations in the 
walking surface or natural neuromuscular noise [28]. As 
a complementary perspective to this statement, Dingwell 
and colleagues proposed the Goal Equivalent Manifold 
framework [29], which suggests that there are count-
less ways to modulate a step by varying features such as 
gait speed, step length, or duration. Humans can there-
fore adjust their walking features from stride to stride to 
achieve specific goals while enhancing task performance, 
such as maintaining constant walking speed on a tread-
mill [29, 30] or a constant gait cycle timing when walking 
to the rhythm of a metronome [29].

LRA is thus a key property of biological series and has 
been proposed as a marker of gait instability in the par-
ticular case of locomotion. Indeed, several studies have 
reported a decreased level of LRA in series of stride dura-
tions of elderly walkers [31] and patients with Parkinson’s 
disease [32] as compared to a control group, reflecting 
a more random temporal organization of their walking 
pattern [32, 33]. Moreover, it has been demonstrated 
that this metrics is influenced by the walking support 
(i.e., overground vs. treadmill) in patients with Parkin-
son’s disease, with the treadmill acting like an external 
pacemaker regulating the leg movement timing [34, 35]. 
This further highlights the importance of using wearable 
devices when assessing the presence of LRA in series of 
stride durations.

Two recent modeling studies [36, 37] predicted that an 
oscillators-based wearable hip orthosis would increase 
the level of LRA towards the level of healthy walkers in 
series of stride durations of patients with Parkinson’s dis-
ease. A subsequent study [38] analyzing the effect of such 
an orthosis on healthy people aged over 55, correspond-
ing to the mean age of onset of Parkinson’s disease [39], 
showed that it can improve gait metrics such as the hip 
range of motion, gait speed, stride length and cadence, 
without impacting the level of LRA. These metrics are 
precisely among those deteriorated by Parkinson’s dis-
ease and are associated with an increased risk of falling 
[3].

Therefore, the purpose of the present paper is to assess 
the effects of robot-assisted gait training in patients with 
Parkinson’s disease, using a wearable device relying on 
an algorithm adapting in real time to the patient’s kin-
ematics. This study is the first to investigate the effect of 
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an assistance based on adaptive oscillators on patients 
affected by this disease after overground gait training. 
This allows measuring the impact of this assistance in a 
semi-ecological condition, and to leverage this condition 
to assess a critical marker of gait affected by this disease, 
i.e., the level of LRA in series of stride durations.

Methods
Participants
Eight patients with Parkinson’s disease participated in 
this study. They were recruited according to the following 
inclusion criteria: positive diagnosis according to the UK 
Brain Bank Criteria, modified Hoehn & Yahr (H&Y) scale 
between 1 and 3, a minimum of 24/30 on the Mini-Men-
tal State Examination (MMSE), and no contraindication 
to physical exercising. Medication was stable for the 4 
weeks preceding the study, and was maintained through-
out the study. One participant was treated with Deep 
Brain Stimulation. The study took place at the Mounier 
Sports Center (Brussels, Belgium) between February 
2022, the date of first inclusion, and November 2022, the 
date of last follow-up visit. Clinical characteristics and 
anthropometrics data of patients are displayed in Table 1.

Procedure
For each patient, the entire protocol lasted 8 weeks. It 
began with a first evaluation session (T0), consisting 
in evaluating their motor disorders through the MDS-
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) 
part III score, also allowing the identification of the side 
most affected by the disease for each patient, and their 
cognitive state through the MMSE, both assessed by a 
neurologist. Then, the balance functions were evaluated 
using the Balance Evaluation Systems Test (Mini-BEST-
est), assessed by a physiotherapist. Moreover, patients 
were asked to walk at their comfortable speed in a sports 

hall, following a rectangular path of 7  m × 12  m with 
rounded corners in order to have the most steady gait for 
LRA assessment. Walking sessions were performed in a 
quiet environment so as not to increase the attentional 
cost of walking [32]. Patients performed several laps 
during 8 min. Speed steadiness was verified by timing 
the time taken by the subject to complete each lap, and 
delivering qualitative instructions to adapt walking speed 
if needed. During this walking session, patients wore a 
motion capture system (MVN Awinda, Xsens, Enschede, 
the Netherlands) composed of 8 inertial measurement 
units (IMUs), allowing to reconstruct the movement of 
their hips as explained in "Gait metrics". They also wore 2 
IMUs (NGIMU, x-io Technologies, Bristol, UK), placed 
just above the lateral malleolus of both ankles, with their 
x-axis oriented in the direction of walking. These were 
used to obtain the sagittal angular velocities for calcu-
lating series of stride durations, as explained in "Stride 
intervals computation". Finally, patients were asked to 
complete a questionnaire at home about their confidence 
in performing daily activities without losing balance, 
assessed through the Activities-specific Balance Confi-
dence (ABC) scale.

Thereafter began an intervention phase, consisting 
of three training sessions a week during 4 weeks, simi-
lar to what has already been done in previous studies as 
summarized in [21]. During these 12 sessions, patients 
walked with a bilateral wearable Active Pelvis Orthosis 
(APO, IUVO, Pisa, Italy, Fig. 1) during 5 to 8 min, after 
a short period where they can adapt their gait to the 
device’s assistance. This orthosis is controlled by an algo-
rithm relying on adaptive oscillators, such that it contin-
uously synchronizes with the recorded hip trajectories, 
and adapts to changes in these signals [40]. In brief, this 
control framework does not impose the patient to fol-
low a prescribed kinematic pattern, but rather delivers 
a torque that tends to attract the patient’s hips towards 
their own predicted trajectory, estimated in the future by 
a prescribed phase lead �ϕ . The torque provided by the 
orthosis is thus given by [41]:

where k is a tunable virtual stiffness [Nm/rad], ϕ is the 
gait phase estimated by the oscillators [% of gait cycle], 
�ϕ is the tunable phase lead [% of gait cycle], and x̂(ϕ) 
[rad] is the hip position estimated by the oscillators (see 
[42, 43] for further details). In this study, the virtual stiff-
ness was adjusted according to the weight of the sub-
ject, i.e., so that the peak torque delivered at the hip was 
equal to 0.1 Nm/kg, corresponding to a comfortable and 
safe level of assistance as reported in [44]. This value was 
determined during the first training session, and then 
maintained constant throughout the following sessions. 

(1)T = k(x̂(ϕ +�ϕ)− x̂(ϕ)),

Table 1  Characteristics of the study population

H&Y stands for the Hoehn and Yahr scale
a Patient implanted with Deep Brain Stimulation

Patient Age Gender Weight  (kg) H&Y Most 
affected  
side

#1 76 M 83 2 Left

#2a   67 M 79.5 2.5 Right

#3 69 M 70.5 2.5 Left

#4 73 F 53.5 1 Left

#5 57 M 93 2 Right

#6 76 M 83.5 2 Right

#7 72 M 83 2 Left

#8 75 M 79.5 2 Left
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The phase lead �ϕ determining how far in advance the 
signal of the hip is predicted for computing the injected 
torque was set to 10% of gait cycle.

This intervention phase was followed by a second 
evaluation session (T1), taking place 1 or 2 day(s) after 
the last training session. During this session, the same 
clinical tests as during the first evaluation session were 
performed, with the exception of the MMSE. This eval-
uation session was repeated after a 4-week wash-out 
period (T2).

Stride intervals computation
The series of stride durations were obtained in the same 
manner as described in [38]. Briefly, the sagittal shank 
angular velocity was recorded at a sample rate of 500 Hz 
using both IMUs, which include a 200 Hz antialiasing 
low-pass filter on the gyroscope signals. A zero-crossings 
detection algorithm was used in order to obtain inter-
stride time series, i.e., the time between two consecutive 
heel strikes of the same foot. The maxima of the signal 
were first identified. Then, the first sign change occur-
ring after each of these maxima was detected. Finally, 
a linear interpolation was performed between both 
adjacent points to obtain the most accurate zero cross-
ing detection. When all these events were detected, the 

inter-stride time series was obtained by differentiating 
the series of these time-stamped events.

Patients walked between 5 and 8 min for each ses-
sion, depending on their daily physical condition, fatigue, 
and their gait speed. The first and last 10 strides of the 
series were discarded, in order to restrict our analysis to 
steady-state behavior only, with the objective to keep as 
many strides as possible, with a minimum of 256 as rec-
ommended in [45] for LRA assessment. Only data from 
the most affected side were analyzed. However, due to 
connection issues between the IMUs and the computer, 
some trials displayed gaps in the recorded data. This hap-
pened in three of the 24 evaluation sessions. In that case, 
data from the least affected side were used.

Gait metrics
Regarding the evaluation sessions, several gait metrics 
have been computed to study the effect of training on the 
patient behavior. On the first hand, some spatiotempo-
ral gait metrics were computed. The walking speed per 
lap was computed by dividing the lap distance (38  m) 
by the recorded time taken by subjects to walk through 
each of them. The mean stride duration over each lap was 
obtained from the inter-stride time series, divided into 
laps thanks to the average measured time to make a lap. 
Finally, the average stride length per lap was obtained by 
taking the product between the stride duration and the 
walking speed per lap. The stride length and the walk-
ing speed were then normalized by the leg length of each 
subject.

On top of this, the hip motion was reconstructed from 
the motion capture system signals. The accelerometer 
and magnetometer signals from each IMUs of the system, 
recorded at a sample rate of 100 Hz, were used to deter-
mine the orientation and position of each IMU relative 
to that of the pelvis. From these, the movement of each 
lower-limb segment was obtained and used to derive the 
hip angle signals, which were low-pass filtered at a cut-
off frequency of 18 Hz. Finally, the flexion-extension hip 
range of motion (ROM) was computed as the difference 
between the highest and the lowest value of this signal 
over a gait cycle. As for the series of stride durations, 
only data from the most affected side were analyzed. 
Data from two acquisitions could not be reconstructed 
correctly (subjects #3 in T1 and #6 in T2) and were thus 
withdrew from the analyses.

Long‑range autocorrelations assessment
Regarding the evaluation sessions, a more complex met-
ric was also extracted from the series of stride durations, 
i.e., the level of LRA in these series, characterized by 
the fractal scaling exponent α . To compute this expo-
nent, we used the Adaptive Fractal Analysis (AFA). This 

Fig. 1  The Active Pelvis Orthosis (IUVO, Pisa, Italy) worn by one of our 
patients
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method is described in details elsewhere [46, 47]. Briefly, 
the integrated time series of length N was divided into 
overlapping subseries of length w. Second order quad-
ratic polynomials were then fitted to each subseries and 
pasted together to obtain a globally smooth trend signal. 
The residual variance F(w) of the difference between this 
global trend and the original series was reported for sev-
eral subseries sizes w, ranging from 5 to the first power 
of 2 smaller than N/2. To obtain evenly spaced values of 
w in a logarithmic scale, the range of log2(w) was divided 
into a series of intervals of equal length with a step size of 
0.5, and the points falling within each interval were aver-
aged. This range of window sizes was determined as the 
most appropriate to handle non-stationary time series, 
i.e., with low frequency trends. Finally, the fractal expo-
nent α was obtained as the slope of the linear regression 
of log2(F(w)) as a function of log2(w) . A value of α > 0.5 
indicates the presence of long-range autocorrelations in 
inter-stride time series [46].

Level of assistance
Since the assistive method based on adaptive oscilla-
tors constantly adapts to the patient behavior, it is not 
possible to predict how much mechanical energy will 
be delivered to the patient during each training session. 
Therefore, this becomes a metric of interest to be investi-
gated. The orthosis behavior during training sessions was 
quantified through signals acquired by onboard sensors 
at 100 Hz. The hip flexion-extension angle was recorded 
by an absolute encoder, and time-differentiated to obtain 
the angular velocity. The injected torque was indirectly 
quantified by measuring the deformation of a torsional 
spring embedded in the device actuation chain [41]. The 
torque injected was first normalized by the weight of 
each subject, then divided into gait cycles using the maxi-
mum hip extension angle as separation between cycles. It 
was then used to compute the energy injected to the hip 
per cycle [J/kg]:

with T the injected torque [Nm/kg], and ẋ the hip angu-
lar velocity [rad/s]. The maximal torque injected at the 
hip per gait cycle was also analyzed.

Statistical analysis
Data were processed with Matlab version R2019a, and 
statistical tests were performed in R version 4.2.2. Sta-
tistics were performed on the spatiotemporal gait met-
rics (one data point per lap), on the hip ROM (one data 
point per gait cycle), and on the clinical scores (one 
data point per evaluation session). The three evaluation 

(2)E =

cycle
T ẋdt,

sessions were compared to each other via linear mixed-
effects models fitted to the different studied metrics. 
These include fixed effects, capturing average trends 
of the metric for each evaluation session, and random 
effects, capturing the extent to which these trends vary 
across participants [48]. It is particularly interesting with 
patients with Parkinson’s disease, who generaly display 
heterogeneous behavior [49]. The linear mixed-effects 
model equation is given by:

with Yi,j the gait metric for the ith subject and the jth rep-
etition (lap or cycle), γ0 a general intercept, Ii a random 
intercept for each subject, b the regression coefficient 
for the evaluation sessions, Xi,j the evaluation sessions, 
and ǫi,j the residuals. An analysis of variance was then 
performed on these models, using a Kenward-Roger’s 
approximation to degrees of freedom [50]. If the p-value 
of this test was lower than 0.05, Tukey’s tests for multi-
ple pairwise comparisons were performed, using the 
Benjamini-Hochberg correction [51]. The variances of 
these three sessions were also compared with a Levene’s 
test [52]. If significant, this test was followed by pairwise 
Levene’s tests, and a Benjamini-Hochberg correction was 
applied on the resulting p-values.

Linear mixed-effects models were also used to assess 
whether the evolution of maximal injected torque and 
injected energy through trainings was significant or not, 
using the same equation as (3) with Xi,j being the training 
sessions.

For graphical representation, the relative change in spa-
tiotemporal gait metrics and ROM was computed by tak-
ing the difference between the values in T1 or T2 and T0, 
divided by the value in T0 and converted in percentage. 
For these metrics, inter-subject variability is represented 
through the standard error of the mean, computed as 
the standard deviation divided by the square root of the 
number of subjects.

Results
Series of stride durations of a healthy adult acquired dur-
ing a pilot test and of a representative patient with Par-
kinson’s disease in T0 and T1 are shown in Fig.  2. As 
expected, the LRA level, i.e., α exponent, is lower for the 
patient than for the healthy adult. It can also be noted 
that the mean stride duration of the patient decreased 
from T0 to T1. Figure 3 reports the hip angle profile of a 
representative patient. It can be observed that the ROM 
is larger in T1 and T2 than in T0.

These representative trends were further assessed at 
the population level by running statistical tests. Assess-
ment of spatiotemporal gait metrics (Fig. 4a–c) indicate 
an increase in gait speed and stride length and a decrease 

(3)Yi,j = γ0 + Ii + bXi,j + ǫi,j ,
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in stride duration between T0 and T1 ( p < 0.001 ) and T0 
and T2 ( p < 0.001 ). The hip ROM (Fig. 4d) also increased 
from T0 to T1 ( p < 0.001 ) and to T2 ( p < 0.001 ). Note 
that linear mixed-effects models are accounting for indi-
vidual biases via the term capturing random intercepts in 
Eq. (3). Statistical tests are therefore robust even if some 
subjects deviate from the group average.

In contrast, no significant difference was found in 
the mean level of LRA in the inter-stride time series, 

indicated by the α exponent, between evaluation ses-
sions (Fig. 5). However, the inter-subject variance in LRA 
exponent during T1 was significantly lower than in T0 
( p < 0.01 ) and in T2 ( p < 0.05 ). Concerning the indi-
vidual evolution of this α exponent between T0 and T1, 
five subjects with lower initial LRA levels had a mean 
increase of 16% (#2, #3, #5, #6, #8), while the three oth-
ers had a mean decrease of 8% (#1, #4, #7), as shown in 
Fig. 5.

Regarding the behavior of the orthosis during the train-
ing sessions (Fig.  6), the maximal torque and energy 
injected at the hip significantly decreased across training 
sessions ( p < 0.001 for both metrics).

Finally, the ABC score was significantly higher in T1 
and T2 compared to T0 ( p < 0.05 ), with a mean ± SD 
score of 35.63 ± 9.64 (maximum possible is 45) in T0, 
37.88 ± 8.01 in T1 and 38.25 ± 7.15 in T2. In contrast, 
no significant difference was found in the other clinical 
metrics, i.e., neither in the MDS-UPDRS part III score, 
even when divided into its Postural Instability and Gait 
Difficulty and rigidity subscores, nor in the Mini-BESTest 
score.

Discussion
Numerous studies have shown the beneficial effects of 
robot-assisted gait training, divided into 10–20 sessions 
of 25–40 min over 4–5 weeks as reviewed by [21], for 
improving spatiotemporal gait metrics in patients with 
Parkinson’s disease. They particularly showed an increase 
in gait speed, stride length and cadence [7–13, 15–19]. 
These three metrics are connected since the increase in 
gait speed can be enhanced by increasing cadence, stride 
length, or both [13]. These results are in accordance 
with those of the present study showing an increase in 
gait speed, stride length and cadence—equivalent to the 
observed decrease in stride duration—, and we further 
showed that these positive outcomes are maintained one 
month after the end of the training. Several hypotheses 
have been raised by previous papers to explain these pos-
itive evolutions after training with robotic devices. First, 
Sale and colleagues [15] suggested that these improve-
ments were due to the intense repetition of a stereo-
typed gait pattern, which induced somatosensory cueing 
and stimulation. Ustinova and co-workers [8] also stated 
that improvements of these spatiotemporal gait metrics 
were due to the use of the treadmill, being necessary with 
the Lokomat exoskeleton, building upon results from 
other studies using a treadmill alone. Nevertheless, the 
present study tends to show that it is possible to obtain 
equivalent results after overground gait training with 
a compliant orthosis that does not follow a stereotyped 
gait pattern. We rather explained these improvements 
in gait parameters by the increased ROM, which, to the 

Fig. 2  From top to bottom: series of stride durations of a healthy 
62-year-old subject freely walking overground during a pilot test, 
and patient #8 in T0, T1 and T2. The gray dashed lines indicate 
the mean stride durations, and α is the fractal exponent

Fig. 3  Left hip angle profiles for patient #1 in the three evaluation 
sessions, with flexion (resp. extension) angles indicated by positive 
(resp. negative) values. Signals were time-normalized over the gait 
cycle. Solid lines represent the mean and shaded areas represent 
the standard deviation over all gait cycles
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best of our knowledge, has never been reported in previ-
ous studies. This increase could be due to the assistance 
provided by the robot that compensates for a disease-
induced hip flexor muscle weakness [54]. Observing this 
result is facilitated by the semi-ecological environment 
used in our study, since the patients’ hips kinematics 
were constrained neither by the environment nor by the 
provided assistance. We hypothesize that this larger hip 
ROM helped patients to increase their cadence and stride 
length, and therefore their gait speed. Interestingly, these 
changes in gait occurred even if the maximal injected 
torque was moderate (about 0.1 Nm/kg, i.e., about 17% 
of what a healthy hip delivers during overground walking 
[55]), and this torque moreover decreased along train-
ing sessions. These improvements are very important 
in preventing falls for patients with Parkinson’s disease. 
Indeed, a decrease in these gait metrics is considered 
as a marker of a higher risk of falling [3]. An important 
caveat to this discussion is that similar results could 
have been observed after an equivalent amount of exer-
cising without the robot. This was not addressed in this 
study, since no control group was included. Nevertheless, 

Fig. 4  Relative changes in (a) normalized gait speed, (b) stride duration, (c) normalized stride length per lap, and (d) hip ROM per gait cycle, 
for T1 and T2 relative to T0. Squares represent the mean across patients and whiskers indicate standard error of the mean. Each point corresponds 
to individual data of a given participant in a given lap or gait cycle. Significance level: ***p ≤ 0.001

Fig. 5  LRA level, characterized by α exponent, for the three 
evaluation sessions. Each gray line corresponds to the data from one 
patient. Squares represent the mean across patients and whiskers 
indicate standard deviation across patients. The shaded area 
corresponds to values of healthy walkers obtained by applying AFA 
on 10 series of 1024 points from [53]. Brackets indicate significant 
differences between standard deviation. Significance levels: 
**p ≤ 0.01 , * p ≤ 0.05
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several studies involving control groups performing 
conventional physiotherapy (i.e., joints mobilization, 
conventional overground gait training, muscle stretch-
ing,...) with the same intensity as a robot-assisted group 
reported larger effects with the latter as compared to the 
former group [13, 14, 16]. It is also interesting to mention 
that some patients spontaneously reported that being 
assisted by a robot helped them and increased their moti-
vation. Indeed, some patients arrived at the training ses-
sion being tired, and the robotic assistance encouraged 
them to carry on with the session until the end.

Regarding the clinical metrics, only the balance con-
fidence (ABC scale) decreased after training, and this 
result was maintained after 1 month post-training. This 
result was also reported in previous articles [14, 56], and 
was associated with an improvement in balance func-
tions. Similar improvements in balance were not iden-
tified in our results through the Mini-BESTest. Since 
the ABC scale is a subjective one, this result shows that 
patients felt an improvement in their self-perceived 

balance confidence after this robot-assisted gait training, 
although this was not confirmed by a measured improve-
ment in their postural control assessed with the Mini-
BESTest score. This can be explained by the fact that both 
studies reporting increased balance functions involved 
patients in more advanced stages (H&Y 2.5–4), thus hav-
ing more pronounced postural instability than those of 
the present study. Another potential explanation for the 
lack of balance improvement in this study is the absence 
of body weight support, in contrast to previous studies 
reporting an improvement in this parameter. With body 
weight support, it was hypothesized that patients can 
better regulate weight shifting during walking [14, 57]. 
On the other hand, the scale rating the motor symptoms 
did not improve either. This is probably because train-
ing with the orthosis was only intended to impact the 
patients’ gait, and not other motor aspects of the disease 
assessed by the MDS-UPDRS part III scale, such as rigid-
ity, bradykinesia, or tremor [56].

Finally, the level of LRA in series of stride durations of 
patients with Parkinson’s disease was 0.66± 0.11 before 
training (Fig. 5), which is lower than the one of healthy 
walkers, i.e., 0.82± 0.04 as computed by applying AFA on 
10 series of 1024 strides from [53]. Having a decreased 
LRA level in series of stride durations indicates a more 
random temporal organization of the series, which is 
thought to be a marker of gait instability in pathologi-
cal populations [32]. However, in the present study, the 
level of LRA of patients did not significantly increase 
after the training sessions; although individual data were 
more clustered around a value of α exponent closer to 
the one of healthy individuals. Indeed, the five subjects 
who displayed the lowest level of LRA before train-
ing (T0) increased it during the second evaluation ses-
sion (T1). In contrast, this level slightly decreased or 
remained constant for the three participants who had 
a high level before training. These levels returned to, or 
exceeded, their initial values in T2, indicating that there 
was no training retention effect after 1 month. The mod-
els described in [36, 37] predicted that the level of LRA 
in series of stride durations should increase when the 
subject is assisted by the device. The present results sug-
gest that a training with the device standardized this level 
in patients with Parkinson’s disease, by increasing it for 
patients who had a lower initial one. Further investiga-
tions should be conducted to assess the potential rehabil-
itative effect of this observation, and the consequence of 
the fact that it is not retained in the longer term.

We did not find a relationship between the variation in 
the level of LRA and other metrics assessed in this study. 
In particular, no correlation has been found between the 
α exponent and the H&Y score, reflecting the level of dis-
ease progression. This may be because this study mostly 

Fig. 6  Evolution of the injected (a) maximal torque and (b) 
energy at the hip during training sessions. Squares represent 
the mean across participants and whiskers indicate standard error 
of the mean. Significance level: ***p ≤ 0.001
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included patients with a moderate disease stage (H&Y 2 −
2.5), and is therefore not capturing the whole spectrum 
of gait impairments encountered in patients with Parkin-
son’s disease. Further experiments should be conducted 
on a wider range of stages and on a larger number of 
patients to identify whether a specific stage of the disease 
would better respond to this therapy. Moreover, this dif-
ference across patients’ response to robot-assisted gait 
training can have other origins than motor functions as 
assessed by the H&Y scale. Indeed, because of the het-
erogeneity of Parkinson’s disease, every patient is not 
impacted in the same way by the disease. There is a large 
variability in symptoms and disease progression across 
individuals. This is due for example to genetic factors 
causing patients to respond differently to the same drug 
[58], or to a more active lifestyle slowing down the dis-
ease progression [59]. All these differences have led cli-
nicians to create different sub-groups of patients, based 
on age of onset, motor phenotype, nonmotor symptoms 
and genetic mutations. This heterogeneity of the disease 
further emphasizes the importance of personalized treat-
ment for each patient [60]. The present study suggests 
that robot-assisted gait training might lead to different 
effects regarding LRA as a function of the patient profile. 
Further investigations should be conducted to establish if 
this is connected to genetic or behavioral markers.

Despite the small sample size of the present study, 
these experiments highlighted interesting results for 
mitigating gait disorders in patients with Parkinson’s 
disease. A larger and more diversified sample (in terms 
of H&Y stage and gender diversity) could help to show 
an improvement in the level of LRA in series of stride 
durations of these patients. Moreover, a longer training 
period, or incorporating this device into weekly physi-
otherapy sessions, might also induce an improvement in 
this metric, and potentially longer-term retention after 
training.

Conclusion
This study showed that an adaptive walking assistance 
delivered by a wearable robot does improve several gait 
metrics in patients with Parkinson’s disease, such as gait 
speed, stride duration and length, and hip ROM. It also 
opened new research avenues for assessing the effects 
of such assistance on the level of LRA in series of stride 
durations, in order to identify which patient profile might 
benefit the most of this assistance, especially regarding 
this particular motor control metric.
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