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Introduction
The complex motor skills of the tongue are just one com-
ponent of the array of fine motor movements required 
for vital tasks such as speech, breathing, mastication, 
and swallowing [1]. Assessing tongue movement capabil-
ity may provide insights for quantifying impaired tongue 
ability, developing new diagnostic and rehabilitation 
techniques, designing new interfaces, and studying the 
underlying mechanisms of tongue control. In this study, 
we developed a methodology (comprising of task, device, 
feedback) for quantifying tongue movement, which we 
utilized to construct a description of tongue movement 
capabilities, which we refer to as a “capability reference”.

Studies of limb motor control have employed the free-
exploration task to investigate movement distributions 
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Abstract
Background  Analysis of tongue movement would benefit from a reference showcasing healthy tongue capability. 
We aimed to develop a reference of tongue capability and evaluated the role of visual feedback on the expression of 
movement.

Methods  Using a wireless tracking intraoral wearable device, we composed probability distributions of the tongue 
tip as subjects were asked to explore the entire sensing surface area. Half of the 32 subjects received live visual 
feedback of the location of the center of the tongue tip contact.

Results  We observed that the visual feedback group was 51.0% more consistent with each other in the position 
domain, explored 21.5% more sensing surface area, and was 50.7% more uniformly distributed. We found less 
consistent results when we evaluated velocity and acceleration.

Conclusion  Visual feedback best established a healthy capability reference which can be used for designing new 
interfaces, quantifying tongue ability, developing new diagnostic and rehabilitation techniques, and studying 
underlying mechanisms of tongue motor control.
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Diagnostic and Rehabilitation techniques, Wearable Technology, Intraoral devices
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and construct descriptions of capability [2–6]. Free-
exploration has been shown to encourage individuals to 
express their range of movement during self-directed 
explorations, providing a detailed reflection of an indi-
vidual’s ability. While free-exploration has been applied 
to study various limb movements, tongue movement 
remains underexplored. However, free-exploration evalu-
ations hold the potential to reveal abilities not discern-
ible through clinical assessments, such as evaluations 
of tongue strength or rate of speech productions [7–9]. 
Here, we employed the free-exploration task to gener-
ate probability distributions of tongue movement, which 
formed the foundation for development of a capability 
reference.

To date, the most common devices for assessing the 
tongue are primarily focused on function over under-
lying capability, partially due to limitations in size and 
mobility of available technologies. Currently, tongue 
strength is measured using hand-held devices such as the 
Iowa-Oral-Pressure-Instrument (IOPI) and the Tongue-
ometer [10–12]. Electromyography has been used to 
study tongue muscles activity mainly in neuromuscular 
diseases [13, 14]. Tongue movement has been assessed 
using imaging techniques, including magnetic resonance 
imaging, X-ray, ultrasound, and video-fluoroscopy, which 
provide visual representations of the tongue shape and 
position [15–19]. In addition, specialized tools designed 
for studying tongue movement include electromagnetic 
articulography (EMA) and electropalatography (EPG). 
EMA involves attaching multiple wired electromagnetic 
sensors to the articulators to create avatar-based models 
of the tongue’s movement [20], while EPG uses an arti-
ficial palate wired to an external recording system that 
visualizes real-time tongue-palate contacts [21]. Stud-
ies have shown that visual feedback of tongue shape and 
movement has led to functional improvement in swal-
lowing and sound production [22–29]. However, inter-
preting visual representations produced by imaging 
technologies can be challenging for untrained individu-
als, and the visual plane of feedback has been shown to 
significantly impact motor adaptation [30–32].

To address the above-mentioned limitations (size, 
mobility, feedback), our group has developed the Tongue-
Trackpad - a portable, wireless, tracking intraoral wear-
able device. The Tongue-Trackpad records the center of 
the tongue tip contact and provides real-time visual feed-
back of its movement [33–35]. In this study, we used the 
Tongue-Trackpad to compose tongue movement proba-
bility distributions during the free-exploration task, while 
we investigated the role of feedback on the expression 
of movement and consequently the capability reference. 
It is crucial to emphasize that free exploration of tongue 
tip contact is distinct from functional movements, as 
it exclusively isolates the tongue from all other motor 

movements necessary for executing functional tasks. 
However, assessments involving free exploration have 
demonstrated the potential to uncover capabilities that 
may not be apparent in evaluations of function [2–6].

Here, we first examined the amount of data required to 
reliably describe tongue probability distributions. Next, 
we investigated whether feedback influenced the move-
ment expression (coverage area, bivariate kurtosis, and 
uniformity of the distributions). We then developed and 
tested the proposed capability reference. Our hypothesis 
was that the group receiving visual feedback would dis-
play higher inter-subject similarity, a broader coverage 
area, and greater uniformity in distribution, thus enabling 
the development of the capability reference.

Methods
Subjects
This study included 32 unimpaired subjects, 13 females 
and 19 males with an average age of 24.6 ± 4.9 years. Sub-
jects provided informed consent in accordance with the 
University of Illinois at Chicago’s Institutional Review 
Board Protocol Number 2017 − 0550.

Data acquisition
The Tongue-Trackpad, developed by our team was used 
to study tongue movement. The Tongue-Trackpad (Fig. 1) 
is a wireless intraoral device that detects tongue contact 
via capacitive sensing. The device’s sensing electronics 
board is incorporated inside a universal-fit retainer. The 
universal-fit retainer is designed in four sizes (X-Small, 
Small, Medium, Large) under the consultation of the 
University of Illinois at Chicago College of Dentistry to 
ensure safety and comfort. The device is hermetically 
sealed using biocompatible thermoplastic (Splint Mate-
rial, Keystone Industries). Bite Registration Material 
(Vinyl Polysiloxane, Exabite II NDS) is utilized to capture 
precise dental impressions to securely fixate the device at 
the tooth-line.

The electronic module is powered via a rechargeable 
3.7  V lithium-ion battery. The module’s printed circuit 
board (PCB) has two distinct sides with one side fea-
turing a capacitive sensor matrix (trackpad) for detect-
ing tongue movements, while the other side contains 
a Bluetooth Low Energy Central Processing Unit (BLE 
CPU) and essential electronic components. A ground 
hatch plane isolates the trackpad from electromagnetic 
interferences of the electronics. The trackpad surface is 
covered with diamond-shaped sensor pads, measuring 
3 × 3 mm with a pitch of 4.5 mm, arranged in 8 rows and 
7 columns. The diamond shape of the pads allows for a 
smooth transition of contact recording during a tongue 
swipe. The trackpad has an area of 720 mm2 and is nar-
rower towards the front of the mouth to maximize cov-
erage of the hard palate. Tongue contact is detected via 
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self-capacitance, hence when the tongue contacts the 
trackpad, a grounded conductive plane is formed par-
allel to the contact area, resulting in a capacitance rise 
compared to the baseline, which is read by the CPU. The 
change in capacitance signals of the rows and columns 
are communicated via BLE to a custom graphical user 
interface.

Tongue contact with the trackpad is elliptical in shape, 
resulting in a Gaussian capacitive response centered 
at the midpoint of the contact. We used this character-
istic to develop a saliva-tolerant algorithm, that would 
filter out any events that depict deviation from a Gauss-
ian response which are attributed to saliva contact. The 
capacitive signals of the rows and columns are used to 
calculate the geometric center of the tongue contact. 
The trackpad has a spatial resolution of 1 mm, resulting 
in 720 resolvable contact positions. The trackpad’s mean 
positional accuracies, defined as the absolute value of the 
difference between real position and the device measured 
position, are 0.52 ± 0.48 mm (mean ± standard deviation) 
along the rows and 0.73 ± 0.62 mm along the columns.

Experimental protocol
The study consisted of a single session which started with 
device fitting and dental impression acquisition. Sub-
jects were seated at a comfortable distance of 2–3 feet 
from a computer screen and were instructed to perform 
the free-exploration task. In this task, participants were 
asked to continuously explore the Tongue-Trackpad sens-
ing area with the tip of the tongue at a self-directed speed 
without lifting, while covering as much surface area as 
possible. The free-exploration task was performed in 
twenty 30-second exploration blocks (10 min total), each 
separated by a 30-second rest period to prevent fatigue, 
during which the device was removed, and the contact 
surface was cleared of saliva.

The visual feedback was presented to subjects using 
a customized graphical user interface developed in 
HyperText Markup Language (HTML) (Fig.  1B). The 
user interface displayed the exploration area along with 
a 1-millimeter diameter dot indicating the real-time 
position of the center of tongue tip contact, along with 
its cumulative exploration history. The cumulative posi-
tion history was preserved across exploration blocks. 

Fig. 1  The Tongue-Trackpad and Visual Feedback Graphical User Interface. (A) The top image shows a size small (S) device with the diamond-shaped 
pads etched on the electronic board forming the active sensing area (shown in green). The device is hermetically sealed with thermoplastic. The bottom 
image shows the electronic board and a subject-specific impression of the upper teeth, acquired via the Bite Registration material. The personalized im-
pression ensures a secure fit of the device to the teeth. (B) Customized graphical user interface displaying the exploration area of the device, the position 
of the center of the tongue tip contact is depicted by a 1-millimeter diameter dot. The cumulative history of the contacts is illustrated by previous dots, 
providing an overview of the path taken during exploration.
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The explored surface area was calculated at the conclu-
sion of each block. To encourage a full profile of capabil-
ity expression, the cumulative history was cleared when 
80% of the available pixels in the graphical display was 
covered. Half of the subjects (6 females, 10 males, aver-
age age: 25.7 ± 5.6 years), received live visual feedback via 
the interface during the free-exploration task, we refer to 
this group as the visual feedback (VF) group. The remain-
ing half of the subjects (7 females, 9 males, average age: 
23.6 ± 4.2 years) were not presented with the visual feed-
back, we refer to this group as the without visual feed-
back (W/O VF) group.

Data analysis
MATLAB (The MathWorks, Inc., Natick, Massachusetts, 
United States) was used to postprocess and analyze the 
row and column signals obtained from our customized 
graphical user interface. As the computational time con-
straints of the live interface were no longer present, to 
enhance the precision of the center of tongue tip contact 
detection, we developed an edge-adjustment algorithm. 
This algorithm was employed when the center of the 
tongue tip contact was within 2.25 mm from the trackpad 
edge, we refer to these as partial contacts. For such con-
tacts, the edge-adjustment algorithm utilized the size of 
the last complete contact to calculate the position of the 
center of the partial contact. Partial contacts with cen-
ters beyond the trackpad boundary were removed. Cubic 
smoothing splines were fitted to contact center positions. 
To account for contacts beyond the device boundary, 
breaks were included in the splines. The splines were fil-
tered with a 5th order low-pass Butterworth filter with 
a cut-off frequency of 6 Hz. The splines were resampled 
at 180  Hz. Velocity and acceleration were derived from 
the position data. Two-dimensional probability distribu-
tions for all kinematic domains (position, velocity, accel-
eration) were created using a 20-by-20 bin histogram. 
The position histogram was bounded by the trackpad 
sensing area, while the velocity and acceleration histo-
grams ranges were selected to accommodate ~ 80% of 
all subjects achieved range (velocity: -6 cm/s to 6 cm/s, 
acceleration: -90 cm/s2 to 90 cm/s2). A median filter was 
applied to enhance the color scale of the position histo-
gram. To account for user-intended periods of inactivity, 
data points with a speed lower than 0.1 cm/s were elimi-
nated. The cumulative representations of tongue move-
ment across 10 min of free-exploration for two subjects 
representing each group are shown in Fig. 2A.

Time to characterization
To obtain a comprehensive understanding of the evolu-
tion of movement patterns for each subject the 10-min-
ute free-exploration dataset was divided into 5-second 
epochs. Each epoch was randomly partitioned into a 

training (75%) and test (25%) dataset. Distributions of 
successive cumulative training datasets were compared 
to the entire cumulative test dataset using the Coefficient 
of Determination (CoD). For each subject, this random-
ization process was conducted 50 times, generating new 
training and test datasets for all kinematic domains. The 
point at which the CoD reached 0.90, the time to char-
acterization, was calculated for each randomization step. 
Additionally, to evaluate chronological effect, the time to 
characterization was calculated using randomly ordered 
5-second epochs. The time to characterization was com-
pared between feedback conditions and between kine-
matic domains using a Two-Way Repeated Measures 
Analysis of Variance (2-way RM-ANOVA). The alpha 
level was set at 0.05 for all analyses. Post-hoc tests were 
conducted using the Bonferroni correction.

The time to characterization analysis revealed that 
5 min of data would sufficiently capture subjects’ move-
ment patterns across all kinematic domains (discussed 
in the Results section). Therefore, 5 min of data was used 
for all further analysis.

Intra-subject similarity
To investigate the self-similarity of the free-exploratory 
task, a subjects’ distribution was compared to another 
5-minute distribution of their own movement. Ten 
30-second blocks of movement data were randomly 
selected to generate a 5-minute distribution (Set 1), 
and the remaining 5  min of data was assigned to Set 2 
(Fig. 3A). To evaluate the similarity between the two dis-
tributions, the CoD was calculated between Set 1 and Set 
2, using one as a predictor and the other as test, and vice 
versa. This randomization process was repeated 50 times, 
generating a total of 100 CoD values for each subject. The 
CoD values were then averaged to determine a score for 
intra-subject similarity. Statistical differences between 
feedback conditions and kinematic domains were ana-
lyzed using a 2-way RM-ANOVA (α = 0.05, post-hoc 
Bonferroni correction).

Inter-subject similarity
To examine inter-subject similarity, the degree to which 
one subject’s distribution predicted other subjects, from 
the same feedback group, was assessed. Ten 30-second 
blocks of movement were randomly selected to gener-
ate a 5-minute distribution for each subject. The CoD 
was computed for all subject pairs in the same group, 
resulting in a 16 × 16 inter-subject confusion matrix. The 
randomization process was repeated 50 times, and the 
inter-subject matrices were averaged to generate a score 
for each subject pair. These scores failed to meet the nor-
mality assumptions; hence non-parametric tests were 
selected to assess statistical differences. The Mann-Whit-
ney U test was used to assess differences in between the 
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two independent feedback groups. Additionally, as the 
kinematic domains (position, velocity, acceleration) were 
related measures, Friedman’s test was adopted to assess 
differences among them.

Movement expression
To assess movement expression across all kinematic 
domains, we examined coverage area and bivariate kur-
tosis of the distributions. We further analyzed position 
distributions by comparing them to a uniform distribu-
tion. Coverage area, a measure of range of movement, 
was determined by calculating the number of bins with 
values that fell above the 5th percentile. Bivariate kurto-
sis was computed using the method described by Mardia 
[36]. To compare the position distributions to a uniform 
distribution, the CoD between the two distributions was 
calculated. All metrics were computed for 50 permuta-
tions of 5  min of data, each composed of ten randomly 
selected 30-second blocks. The values of the 50 random-
ization steps were averaged to obtain a subject score for 
each metric. For coverage area, statistical differences 
across kinematic domain were compared between the 
feedback groups using a Student’s t-test (α = 0.05). Sta-
tistical differences in bivariate kurtosis among feedback 
groups and kinematic domains were analyzed using a 
2-way RM-ANOVA (α = 0.05, post-hoc Bonferroni cor-
rection). The differences in position uniformity amongst 
feedback groups were assessed using a Student’s t-test 
(α = 0.05). Additionally, we investigated the impact of par-
tial contacts and analyzed all the metrics (coverage area, 
bivariate kurtosis, and uniformity of the distributions) 
within the sensor region where the positional accuracy 
was less than 1 mm, referred to as full-contact region.

Capability reference generation
For each subject, free-exploration blocks of movement 
data were randomly partitioned into equal halves, with 
50% allocated to training and the remaining 50% to test 
datasets. Within each feedback group, the position dis-
tributions of the training datasets were averaged. These 
averages were then utilized to predict the 16 test data-
sets in the representing feedback group using the CoD. 
This process resulted in 16 CoD values for each feedback 
group that were averaged to drive a mean CoD value, 
referred to as a prediction score. The entire randomiza-
tion process and the prediction score calculation was 
iterated 50 times. The resulting 50 prediction scores were 
statistically compared using a Student’s t-test (α = 0.05) 
amongst the feedback groups. Subsequently, the training 
distributions of the feedback group exhibiting a signifi-
cantly higher prediction score were averaged to generate 
a capability reference.

Results
Time to characterization
As mentioned in the Methods section, we observed that 
5  min of data were sufficient to characterize movement 
distributions across all kinematic domains. As expected, 
coefficient of determination (between the training 
and cumulative test datasets) gradually increased over 
time, suggesting that a subjects’ movement distribu-
tions approached their overall pattern as more data was 
included (Fig.  2B). A 2-way RM-ANOVA revealed that 
the feedback conditions did not play a role in the time 
to characterization. However, the choice of kinematic 
domain played a significant role in the amount of data 
required to reliably characterize the movement distribu-
tions, with velocity reaching time to characterization the 
fastest (2-way RM-ANOVA, F (2, 62) = 20.11, p < 0.001). 
Post-hoc comparisons using Bonferroni’s correction 
showed that, on average, velocity was 61% faster than 
position in the W/O VF group and only 34% faster in the 
VF group (p < 0.001). As expected, as chronological effect 
was eliminated by randomizing the order of the epochs, 
the time to characterization decreased for all kinematic 
domains across both feedback groups (Fig.  2B, inserts). 
Feedback condition had a main effect on the time to 
characterization (2-way RM-ANOVA, F (1, 31) = 7.26, 
p = 0.009). Post-hoc analysis showed that the W/O VF 
group reached the time to characterization 29% faster 
than the VF group for position (p = 0.013). Kinematic 
domains also had a main effect on the time to character-
ization (2-way RM-ANOVA, F (2,62) = 27.68, p < 0.001), 
with velocity being 66% faster than position in the W/O 
VF group and 55% faster in the VF group (p < 0.001). The 
results indicate that, on average, all kinematic domains 
in both feedback groups reached the time to character-
ization in 5  min. Consequently, 5  min of free-explora-
tion was determined as necessary duration to construct 
movement probability distributions. For a visual repre-
sentation of the distributions for all subjects across all 
kinematic domains, refer to Fig. S1 (additional file 1).

Intra-subject similarity
Interestingly, subjects were less repeatable in their free-
exploration distributions across all kinematic domains 
in the visual feedback group. A two-way RM-ANOVA 
revealed significant differences in intra-subject similar-
ity scores between the feedback groups (F (1,31) = 9.09, 
p = 0.004). Post-hoc comparisons using Bonferroni’s cor-
rection revealed that the W/O VF group achieved 12% 
higher similarity score for position than the VF group 
(p = 0.029) (Fig.  3B and C). Furthermore, differences in 
intra-subject similarity scores were observed across kine-
matic domains, with acceleration achieving the high-
est intra-subject similarity (2-way RM-ANOVA, F (2, 
62) = 35.11, p < 0.001). On average, in the W/O VF group, 
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acceleration exhibited a 16% higher intra-subject similar-
ity score than position (p < 0.001). While in the VF group, 
acceleration achieved a higher intra-subject similar-
ity score than both position and velocity by 24% and 2% 
respectively (p < 0.001).

Inter-subject similarity
Providing visual feedback led to an increased similarity 
in tongue movement patterns. Mann-Whitney U tests 
indicated that the visual feedback significantly affected 
inter-subject similarity in position (z = -7.71, p < 0.001), 
with the VF group having a mean rank that was 51% 
higher than the W/O VF group (Fig.  3B and D). Non-
parametric Friedman tests of differences among repeated 
measures revealed that the choice of kinematic domain 
significantly affected inter-subject similarity in both 
the W/O VF group (χ 2(2) = 76.23, p < 0.001) and the VF 
group (χ 2(2) = 22.16, p < 0.001). In the W/O VF group, 

the mean rank of position was 28% lower than that of 
velocity (p < 0.001) and 33% lower than that of accelera-
tion (p < 0.001). In the VF group, the mean rank of posi-
tion was 19% lower than that of acceleration (p < 0.001) 
and the mean rank of velocity was 10% lower than that of 
acceleration (p = 0.032). Higher similarity in higher kine-
matic domains could be attributed to constraints in the 
movement range. These results suggest that with visual 
feedback, tongue movement patterns in position became 
more similar within the group, which could lead to the 
development of a more consistent capability reference.

Interestingly, we observed that subjects are more 
similar to themselves than they are to others. When 
comparing intra- to inter-subject similarity, we found 
that intra-subject values were higher in the W/O VF 
group (median ± interquartile range, pos: 0.87 ± 0.11, 
vel: 0.96 ± 0.03, acc: 0.96 ± 0.03) and the VF group 
(pos: 0.74 ± 0.10, vel: 0.94 ± 0.08, acc: 0.95 ± 0.08) than 

Fig. 2  Temporal Evolution of Movement Probability Distributions During 10 min of Free-Exploration. (A) Cumulative probability distributions over time 
intervals (0-0.5 min, 0–1 min, etc.) illustrating position (top), velocity (middle), and acceleration (bottom) along the anteroposterior (AP) and mediolateral 
(ML) axes. Two representative subjects from the W/O VF and VF group are depicted by blue and green boarders, respectively. (B) Time to characteriza-
tion, point at which the CoD reached 0.9, in the W/O VF group (left) and the VF group (right) for all subjects using successive epochs are presented. Blue 
and green curves correspond to the representative subjects in (A), while the gray-scale curves represent all other subjects. Dashed lines indicate each of 
the 50 randomizations steps for each subject, whereas the solid lines denote the average of the 50 curves. The horizontal dashed line represents the 0.9 
threshold. In the acceleration domain, one subject in the VF group did not reach the threshold for determination. Inserts in each plot display curves for 
random-order epochs. These results suggest that 5 min of data are sufficient to describe movement distributions across all kinematic domains
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Fig. 3  Intra- and Inter-Subject Similarity. (A) Probability distributions for a representative segment of randomly selected 5 min data (Set 1), along with 
the subsequent 5 min (Set 2). The blue and green boarders denote representative subjects from Fig. 2. (B) The average inter-subject confusion matrices, 
computed from 50 iterations, are presented across the three kinematic domains for both feedback groups. Rows denote a subject as a predictor, while 
columns represent a subject as the test data. The bolded diagonal elements indicate the intra-subject similarities between Set 1 and Set 2 (blue and 
green squares denote representative subjects in (A)). Violin plots illustrating the intra- subject (C) and inter-subject (D) similarity of data in (B). The left 
side of each violin plot represents the data spread, while the right side shows a histogram of the data, and the white circle marks the median. Outliers, 
defined as points more than 1.5 interquartile ranges above the upper quartile or below the lower quartile, were excluded for visualization. Significant 
difference (p < 0.05) is indicated by *. These results suggest that intra-subject position distributions are less similar for the VF group, while inter-subject 
position distributions are more similar
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the inter-subject values in the W/O VF group (pos: 
0.07 ± 0.63, vel: 0.54 ± 0.85, acc: 0.56 ± 0.86) and VF group 
(pos: 0.33 ± 0.33, vel: 0.51 ± 1.12, acc: 0.52 ± 1.07).

Movement expression
By incorporating visual feedback, the explored positional 
area increased, and the distribution of movement became 

more uniform. The Student’s t-test revealed that the feed-
back conditions had a significant effect in the coverage 
area in position distribution with VF allowing for 22% 
greater coverage area (p = 0.04) (Fig.  4A). Interestingly, 
when limiting the analysis to the full-contact region, no 
significant difference in coverage area between feedback 
conditions was observed. This finding suggests that feed-
back encouraged the exploration of the trackpad edges.

While no significant difference in bivariate kurtosis 
was observed between feedback conditions, a signifi-
cant difference between kinematic domains was found 
with position domain exhibiting the lowest bivariate 
kurtosis (2-way RM-ANOVA, F (2, 62) = 50.55, p < 0.001) 
(Fig.  4B). Post-hoc comparisons using Bonferroni’s cor-
rection revealed that in the W/O VF group, on average, 
position achieved a 73% and 81% lower bivariate kurto-
sis than velocity and acceleration, respectively (p < 0.001). 
Similarly in the VF group, position achieved a 73% and 
82% lower bivariate kurtosis than velocity and accelera-
tion, respectively (p < 0.001). This difference could be due 
to the limited range of movement in higher kinematic 
domains due to anatomical constraints. When restricting 
evaluation to the full-contact region, similar to the entire 
trackpad, position had significantly lower bivariate kur-
tosis compared to velocity and acceleration (2-way RM-
ANOVA, F (2, 62) = 46.84, p < 0.001). Specifically, in both 
the W/O VF and VF groups, position had an average of 
72% and 80–82% lower bivariate kurtosis than velocity 
and acceleration (p < 0.001).

When comparing position distributions to a uniform 
distribution a significant difference was detected between 
the two groups with the VF group being 51% more simi-
lar to uniform distribution than the W/O VF group 
(p = 0.04) (Fig.  4C). While in the full-contact region VF 
group is only 39% more similar to uniform distribution 
than the W/O VF group (p = 0.02). These results suggest 
that with visual feedback subjects expressed a broader 
range of movement that is more uniformly distributed.

Capability reference generation
The incorporation of visual feedback in position train-
ing datasets resulted in higher predictability scores in 
the test datasets. These prediction scores were signifi-
cantly higher than those in the W/O VF group (p < 0.001) 
(Fig.  5A). The mean prediction score for the VF group 
was 0.68 ± 0.11, a 42% increase over the W/O VF group’s 
mean score of 0.48 ± 0.32.

Given these results, with the VF group demonstrating 
higher inter-subject similarity, wider and more uniform 
distributions, and higher prediction scores, the position 
probability distributions were averaged to generate the 
capability reference (Fig. 5B).

Fig. 4  Movement Expression. Violin plots illustrate (A) coverage area and 
(B) bivariate kurtosis of position, velocity, and acceleration distributions 
for the W/O VF group (gray) and the VF group (white). (C) Violin plots dis-
play the comparison of the position distributions to a uniform distribution 
using CoD. The left side of each violin plot represents data spread, while 
the right side depicts a histogram of the data, with the median marked 
with a white circle. Significant differences (p < 0.05) are indicated by *. 
These results suggest that for the VF group, the coverage area in position 
increased, and the distribution became more uniform
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Discussion
We introduced a new methodology that consisted of 
the free-exploration task and the Tongue-Trackpad for 
studying tongue movement. We investigated the influ-
ence of visual feedback on tongue movement probability 
distributions. The major findings of this work indicate 
that with visual feedback, we observed: (1) higher inter-
subject similarity, (2) a greater coverage area with a more 
uniform distribution, and (3) higher prediction ability of 
tongue distributions. These findings led to the develop-
ment of a reference of unimpaired tongue capability.

In our evaluation of the amount of data required to 
characterize tongue distributions, we observed that when 
considering the temporal progression of tongue distri-
butions, feedback conditions exhibited no impact on 
the time required for characterization. However, when 
mitigating the impact of chronological effects through 
the randomization of epoch orders, it became evident 
that the group receiving visual feedback required more 
time to achieve characterization in the position domain. 
A potential reason for this observation could be that 
providing visual feedback may have prompted individu-
als to employ adaptive strategies, resulting in a diverse 
array of movement patterns. This, in turn, may have 
required a greater volume of data to achieve character-
ization. However, in both chronological and randomized 
orders, velocity reached time to characterization faster 
than position under both feedback conditions. A pos-
sible explanation for this observation could be anatomi-
cal constraints, which may restrict the range of attainable 

tongue velocities. This, in turn, could influence the 
swifter time to characterization.

Our study revealed that subjects demonstrated intra-
subject similarity in their distribution patterns, yet visual 
feedback had a diminishing effect on this similarity. It is 
important to note that in our analysis of similarity, we 
generated 5-minute distributions by randomly selecting 
ten 30-second exploration blocks. Hence, the random 
30-second blocks held the potential to exhibit distinct 
movement behavior, as feedback may have encouraged 
subjects to diversify their movement to achieve the goal 
of covering the entire explorable area.

Also, we observed that intra-subject similarity was 
higher than inter-subject similarity for both feedback 
groups and across all kinematic domains. This finding 
suggests the presence of a unique, subject-specific distri-
bution pattern that makes one more self-similar and less 
similar to others. Our data suggest that visual feedback 
increased inter-subject similarity in the position domain. 
This may indicate that subjects displayed distinctive, sub-
ject-specific patterns when feedback was absent, which 
may have diminished with feedback. Additionally, we 
observed that with feedback, subjects achieved a greater 
and more uniform coverage area, which also contributes 
to higher inter-subject similarity.

While the position distributions of subjects became 
more similar with visual feedback, no differences were 
observed in velocity and acceleration distributions. One 
potential reason for this observation could be the ana-
tomical limitation on the achievable ranges of tongue 

Fig. 5  Capability Reference. (A) Violin plots depict the prediction scores for both the W/O VF and VF groups. The left side of each violin plot shows the 
data spread of the 50 iterations of prediction scores, while the right side displays a histogram, with the median marked by a white circle. Significant dif-
ference (p < 0.05) is indicated by *. (B) The capability reference was derived from the average of the VF group’s position probability distributions. Results 
indicate that the use of the VF group distributions significantly improved the prediction of new tongue movement distributions and enabled the devel-
opment of a reference of capability
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velocity and acceleration. Another possible explanation 
could be that the user interface only provided subjects 
with a history of positional exploration and not a history 
of changes in velocity or acceleration. Future work could 
investigate whether providing feedback in the velocity or 
acceleration domains could influence the distributions of 
these domains.

As mentioned, an important finding was that the group 
receiving visual feedback expanded their explorable cov-
erage area, and their distributions became closer to a 
uniform distribution. We further investigated this obser-
vation and examined the effect of partial contacts on the 
coverage area. Interestingly, we found no significant dif-
ference in coverage area between the feedback groups 
in the full-contact region. However, we observed that 
the feedback group exhibited a greater number of con-
tacts at the edges, suggesting that visual feedback may 
have encouraged exploration of the edges. It is important 
to note that the developed user interface did not pro-
vide the subjects with feedback regarding the frequency 
of contact at various locations. In the future, explor-
ing the potential impact of such feedback on the spread 
of the position distributions could be a valuable area of 
investigation.

We have also gained insight into our metrics and 
their utility. While evaluating feedback groups, bivariate 
kurtosis showed similar trends to the uniformity met-
ric; however, a significant difference was not observed. 
Although previous researchers have found kurtosis to be 
a useful metric for evaluation of limb movement [37, 38].

It is interesting to note that experiments focused on 
the upper limb have illustrated that the velocity domain 
serves as a more effective discriminator, particularly 
between unimpaired individuals and those with impair-
ments [2, 3, 39]. The absence of differentiation in velocity 
within our study may be attributed to the confined space 
of the oral cavity, which inherently restricts the range of 
attainable tongue velocities.

In addition, the capability reference we developed 
revealed a slight asymmetry in the distribution, with 
a bias toward the left side. However, this bias was not 
observed across all subjects (Fig. S1, additional file 1). 
Further studies will be necessary to explore the origin 
of this bias, which could have interesting implications 
for the neural motor pathways responsible for tongue 
movement. It should be noted that our non-paramet-
ric capability reference does not attempt to explain the 
underlying biomechanics or neurophysiology of tongue 
movement. Some may argue that a model of tongue 
structure and motor control would perform better at 
describing tongue movement. It is also important to note 
that this study was conducted in a parallel design, and 
employing a crossover experimental design could have 
allowed for investigation of design order effects.

Furthermore, the capability reference presented in 
this work may only be applicable to specific recording 
devices. We developed a device with a planar contact 
surface to avoid differences among different curvilinear 
palates. However, movement on a transverse plane does 
not reflect natural tongue movement as seen in vital 
tasks of speech, breathing, mastication, and swallowing. 
Future studies could explore self-directed tasks using 
curvilinear sensor arrays that allow additional ranges of 
tongue movement that might relate closer to the vital 
tasks. In this work, free-exploration was used to isolate 
the tongue and revealed some of its capabilities. Yet, the 
tongue is only a part of the variety of fine motor move-
ments required for vital tasks as tongue movement in 
and of itself is not functional. We assert that by assessing 
tongue movement capabilities we provide a foundation 
for understanding only one critical component of these 
vital tasks. Other abilities of lip, jaw movement, strength, 
and coordination require attention.

Conclusion
With the goal of developing a healthy tongue capability 
reference for tongue movement analysis, we introduced 
a new methodology involving the utilization of the free-
exploration task and Tongue-Trackpad. Providing visual 
feedback during free-exploration resulted in higher inter-
subject similarity, a broader coverage area, and greater 
uniformity in tongue movement probability distributions. 
These probability distributions were used to develop a 
reference of unimpaired tongue capability. This capability 
reference could lead to future developments in design-
ing new interfaces, quantifying tongue ability, developing 
new diagnostic and rehabilitation techniques, and study-
ing the underlying mechanisms of tongue control.
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